Почему мы помним. Как раскрыть способность памяти удерживать важное. Чаран Ранганат. Читать онлайн. Newlib. NEWLIB.NET

Автор: Чаран Ранганат
Издательство: Издательство АСТ
Серия: Элементы 2.0
Жанр произведения:
Год издания: 2024
isbn: 978-5-17-163454-4
Скачать книгу
выполняющего задания на память, видно, что в каждый конкретный момент одни пиксели ярче, другие – темнее. Их узор все время слегка меняется: конкретный пиксель может подсветиться или угаснуть. Раньше эти перемены считали «шумом» МРТ-аппарата[49], но теперь стало ясно, что там есть и значимая информация. В 2009 году мы обедали с другом, Кеном Норманом, который сейчас руководит факультетом психологии в Принстоне, – он убедил меня повнимательнее вглядеться в эти узоры активности мозга. Тогда я задумался: что, если каждый раз, как мы обращаемся к воспоминанию о конкретном событии, этому событию соответствует уникальная схема активности мозга? Что, если каждый узор из ярких и темных пикселей подобен QR-коду, который можно отсканировать телефоном, и каждая уникальная конфигурация укажет на конкретное воспоминание? Если это так, то при помощи МРТ можно считывать «коды памяти», которые сообщат нам, как воспоминания располагаются в разных областях мозга[50].

      Например, если бы я лег в МРТ-сканер и стал бы вспоминать, как мой брат Рави играл со своей собакой на недавнем семейном пикнике в парке, а затем вспомнил бы, как мы с ним встретились несколько лет назад, когда он выгуливал собаку по грязному тротуару своего района Сан-Франциско, – может быть, мы обнаружили бы сходные коды памяти для каждого из этих воспоминаний. Именно это мы обнаружили в экспериментах[51], глядя на области неокортекса, в которых, предположительно, хранятся обобщенные факты: объект «Рави» и объект «его собака Зигги» присутствовали при событии. А вот в гиппокампе коды памяти для этих двух событий выглядели совершенно по-разному. Зато, когда мы смотрели на гиппокамп человека, вспоминающего два эпизода одного и того же события – например, я вспоминал встречу с Рави на пикнике в парке и свою жену Николь на том же пикнике, – коды памяти выглядели очень похоже.

      Эти данные помогли разгадать тайну мысленных путешествий во времени при помощи гиппокампа. Клеточные ансамбли, которые позволяют нам запоминать определенные элементы события: лицо Рави, вкус бутербродов на пикнике, лай его собаки – располагаются в разных областях мозга, которые обычно не общаются друг с другом. Единственное, что между ними общего, – они активировались примерно в одно и то же время. Гиппокамп же связан со многими из этих областей, и его задача – хранить отсылки к тем ансамблям, которые активируются одновременно. Если бы позже я снова посетил тот парк, мой гиппокамп помог бы заново активировать все эти клеточные ансамбли и заново пережить встречу с Рави. Гиппокамп позволяет нам «индексировать» воспоминания о событиях[52] не согласно тому, что произошло, а согласно тому, где и когда оно произошло.

      У такого способа формирования воспоминаний есть занятное побочное преимущество. Гиппокамп выстраивает воспоминания по контексту[53], а потому, если вспомнить что-то одно, проще будет вспоминать и о других событиях, произошедших


<p>49</p>

Джим Хэксби и его коллеги из NIMH провели одно из первых исследований в поисках полезной информации в паттернах активности на фМРТ (Haxby et al. 2001). Шон Полин и Кен Норман с коллегами из Принстона применили эту идею в новаторском исследовании, где использовали машинное обучение, чтобы извлекать информацию из паттернов вокселей (это называется «многовоксельный анализ паттернов», или MVPA) и декодировать контекст, по которому люди восстанавливали информацию из памяти (Polyn et al. 2005). Взглянув на данные, полученные моим студентом Люком Дженкинсом, Кен Норман предложил нам с Люком попробовать другой подход: репрезентативный анализ сходства (RSA; Kriegeskorte et al. 2008) – это и есть метод «кода памяти», который я описываю здесь. RSA, по-моему, более интересен, чем техники декодирования на основе машинного обучения, поскольку дает больше информации о том, связаны ли воспоминания о похожих людях, вещах или контекстах с похожими паттернами активности мозга. В 2010 году Гуй Сюэ и Расс Полдрак из Стэнфорда одновременно с нашей лабораторией опубликовали первые два исследования, использующие RSA для изучения эпизодической памяти (Xue et al. 2010, Jenkins, Ranganath 2010).

<p>50</p>

См. обзор того, как это работает, в Dimsdale-Zucker, Ranganath 2018.

<p>51</p>

В этом разделе я описываю не одно конкретное исследование. Пример, который я привожу, призван представить в упрощенной форме результаты большого количества исследований, которые мы провели с 2010 по 2020 год (Jenkins, Ranganath 2010, Hannula et al. 2013, Hsiehetal. 2014, Ritcheyetal. 2015, Libbyetal. 2014, 2019, Wangetal. 2016, Dimsdale-Zuckeretal. 2018, 2022). Техники RSA для исследования памяти развивала настоящая звездная команда, в составе которой были Халле Димсдейл-Цукер, Люк Дженкинс, Лора Либби и Фрэнк Се (тогда они были студентами в моей лаборатории), и Морин Ритчи (в то время постдок, а ныне успешный преподаватель в Бостонском колледже).

<p>52</p>

Здесь я ссылаюсь на теорию индексирования гиппокампа (Teyler, DiScenna 1986, Teyler, Rudy 2007) и теорию когнитивного картирования (обобщенную в O'Keefe, Nadel 1979).

<p>53</p>

Этот вывод называется эффектом временной смежности (Healey et al. 2019), и ряд исследований использовали этот эффект, чтобы показать, как гиппокамп организует эпизодические воспоминания в соответствии со временным и пространственным контекстом. Например, авторы Miller et al. 2013 фактически записывали активность клеток в гиппокампе у пациентов с эпилепсией, пока те перемещались в среде виртуальной реальности. Позже, когда пациенты вспоминали события из виртуальной реальности, у них активировались те же клетки, что в местах, где происходили эти события. См. также Umbach et al. 2020 и Yoo et al. Сходные данные из фМРТ-исследований см. в Deuker et al. 2016 и Nielson et al. 2015.