Мне стало неловко. Я просто не знал, что ответить. И наконец сказал:
– Я тоже всю жизнь занимаюсь светом. И думаю, что из красного с белым получить желтый нельзя – только розовый.
Ну и пошел я в магазин, купил краски, принес их в ресторан. Маляр спустился сверху, к нам присоединился и хозяин ресторана. Я поставил банки с красками на старый стул, маляр начал их смешивать. То красной побольше добавит, то белой – все равно получается розовый цвет, – а он все смешивает и смешивает. Наконец он пробормотал что-то вроде: «Я обычно тюбик с желтой краской использую, чтобы цвет был поярче, – немного бы добавить, вот и получится желтый».
– А! – сказал я. – Тогда конечно! Если добавить желтой краски, выйдет желтый цвет, а без нее – никак.
Маляр ушел обратно наверх.
А владелец ресторана возмутился:
– Ну и нахал же этот малый – спорит с человеком, который всю жизнь изучает свет!
Я все это говорю для того, чтобы показать вам, какое доверие я питал к этим «настоящим людям». Маляр рассказал мне столько дельного, что я был готов поверить в существование странного, неизвестного мне явления. Я-то считал, что цвет у него выйдет розовый, но все же думал: «Если он добьется желтого, значит, тут какое-то новое, интересное явление и его надо увидеть».
Занимаясь физикой, я часто впадал в заблуждения, полагая, что та или иная теория на самом деле не так уж хороша, думая, что с ней связаны сложности, которые ее непременно испортят, считая, что всякое может быть – отлично зная при этом, что именно согласно ей должно произойти.
Другой набор инструментов
В аспирантской школе Принстона физическое и математическое отделения делили общую комнату отдыха, в которой мы каждый день в четыре часа пили чай. Так мы не просто имитировали порядки английского колледжа, но и получали послеполуденную разрядку. Кто-то играл в го, кто-то обсуждал теоремы. В те дни главной сенсацией была топология.
Как сейчас помню двух ребят – один сидит на кушетке, напряженно о чем-то размышляя, а другой стоит перед ним и говорит:
– Следовательно, то-то и то-то справедливо.
– Это почему же? – спрашивает сидящий.
– Так это же тривиально! Тривиально! – восклицает стоящий и быстро перечисляет ряд логических шагов. – Во-первых, предполагается то и это, затем мы берем это и то Керкгофа, а у нас имеется теорема Ваффенстофера, мы делаем подстановку этого и строим то. Теперь ты берешь вектор, который направлен вот сюда, и тогда то да се…
А сидящий на кушетке силится понять весь этот ужас, который продолжается – и на большой скорости – целых пятнадцать минут!
И вот стоящий заканчивает, а сидящий говорит:
– Да, да. Это тривиально.
Мы, физики, и посмеивались над ними, и старались их понять. Мы решили, что «тривиально» означает «доказано». И говорили им так: «У нас имеется новая теорема, согласно которой математики способны доказывать только тривиальные теоремы,