Рис. 16
В то время Галилей и не подозревал, что и сам обладает редчайшим интеллектом, ничем не уступающим уму его греческого наставника. Вдохновленный легендой об Архимеде и золотом венце, Галилей в 1586 году опубликовал небольшой трактат под названием «La Bilancetta» («Маленькое равновесие») о гидростатических весах собственного изобретения. Впоследствии он воздал дань наследию Архимеда и в литературоведческой лекции, которую прочитал во Флорентийской академии; тема лекции была несколько необычной – местоположение и размеры Дантова ада по данным «Божественной комедии».
В 1589 году Галилей был назначен заведующим кафедрой математики в Пизанском университете, отчасти благодаря настойчивым рекомендациям Христофора Клавия (1538–1612), авторитетного римского астронома и математика, которого Галилей посетил в 1587 году. Звезда молодого математика явно находилась на подъеме. Следующие три года Галилей посвятил изложению своих первых идей о теории движения. Эти сочинения, несомненно, вдохновленные трудами Архимеда, содержат поразительную смесь интересных идей и ошибочных утверждений. Например, Галилею первому пришло в голову, что проверять теории относительно падающих тел можно при помощи наклонной плоскости, которая замедляет движение, – однако он ошибочно утверждает, что если сбросить тело с башни, то «древесина в начале движения падает быстрее свинца»[34]
Направление интересов Галилея и общий ход его мыслительного процесса на этом этапе жизни были несколько неправильно истолкованы его первым биографом Винченцо Вивиани (1622–1703). Вивиани нарисовал популярный образ дотошного упорного экспериментатора, который извлекал новые идеи исключительно из внимательного наблюдения над природными явлениями[35]. На самом деле до 1592 года, когда Галилей перебрался в Падую, и направление интересов, и методология у него были чисто математическими. Он полагался в основном на мысленные эксперименты и на архимедово описание мира в терминах геометрических фигур, которые подчиняются математическим законам. В те годы главная претензия к Аристотелю у Галилея сводилась к тому, что Аристотель «не подозревал не только о глубоких и достаточно сложных открытиях геометрии, но и о самых элементарных принципах этой науки»[36]. Также Галилей считал, что Аристотель слишком полагался на чувственный опыт, «поскольку он на первый взгляд дает некоторое подобие истины». Сам же Галилей, напротив, советовал «всегда приводить не примеры, а умозаключения (ибо мы ищем причины следствий, а опыт их не выявляет»).
В