Бизнес без эмоций: Как принимать решения, основываясь только на данных. Артем Демиденко. Читать онлайн. Newlib. NEWLIB.NET

Автор: Артем Демиденко
Издательство: Автор
Серия:
Жанр произведения:
Год издания: 2025
isbn:
Скачать книгу
причин неверных выводов является использование неактуальных или искаженных данных. Поэтому перед анализом следует проверить:

      – Актуальность данных: данные должны быть собраны в максимально близкий к настоящему моменту интервал.

      – Согласованность данных: данные должны соответствовать друг другу по форматам и единицам измерения.

      Например, если данные о продажах представлены в разных форматах (некоторые значения в тысячах, другие – в миллионах), это может привести к неправильным выводам. Рекомендуется создавать сводные таблицы, чтобы выровнять значения перед дальнейшим анализом.

      4. Осторожность с корреляциями и причинно-следственными связями

      Принцип «корреляция не подразумевает причинность» – важный аспект, который следует учитывать. Часто организации, анализируя данные, делают выводы на основе корреляции, не учитывая потенциальные факторы, которые могут влиять на результаты. При анализе данных важно проводить дополнительные исследования и использовать методы статистического анализа, такие как регрессионный анализ, чтобы подтвердить или опровергнуть предположения.

      Например, если в данном квартале увеличились продажи коммерческой недвижимости и одновременно выросло использование коворкингов, это не значит, что одно вызывает другое. Возможно, на это повлияли изменения в налоговой политике или экономическая ситуация в регионе. Оцените возможность других факторов и проведите дополнительный анализ.

      5. Преднамеренное создание гипотез

      Одним из способов предотвратить неверные выводы является формирование гипотез перед началом анализа данных. Создание четких гипотез помогает сосредоточиться на конкретных вопросах и проблемах, а также упрощает процесс сбора и анализа данных.

      Например, если вы хотите понять, почему увеличилось количество возвратов продуктов, вы можете сформировать гипотезу: "Возврат продукции связан с качеством упаковки". В этом случае можно будет проверить гипотезу, собрав данные о частоте возвратов в зависимости от типа упаковки, а не просто анализировать общее количество возвратов без контекста.

      6. Постоянная переоценка выводов

      Очень важно регулярно переоценивать выводы и решения на основе новых данных и результатов. Бизнес-среда постоянно меняется, и то, что работало вчера, может оказаться неэффективным сегодня. Создание механизма для регулярного анализа эффективности принятия решений поможет выявить ошибки и скорректировать курс.

      Компании могут использовать модели, которые регулярно обновляют данные и пересматривают свой подход. Одним из примеров может служить компания по производству одежды, которая, отслеживая тренды в социальных сетях, вносит изменения в свои коллекции в режиме реального времени.

      7. Вовлечение междисциплинарной команды

      Привлечение специалистов из различных областей может значительно повысить качество анализа данных и снизить вероятность неверных выводов. Мультидисциплинарные