Белая рыба. Сказания о Бай и Ю. Персиковое дерево. Гу Шу. Читать онлайн. Newlib. NEWLIB.NET

Автор: Гу Шу
Издательство: Издательство АСТ
Серия: Белая рыба. Сказания о Бай и Ю
Жанр произведения:
Год издания: 2019
isbn: 978-5-17-170704-0
Скачать книгу
id="n_23">

      23

      «Декамерон» – собрание ста новелл итальянского писателя Джованни Боккаччо, написанное примерно в 1352–1354 гг.

      24

      Горная хижина среди трав и жуков.

      25

      Ли (кит. 里) – около 500 метров.

      26

      Цзи (кит. 戟), или алебарда, – древнее оружие, соединявшее в себе клевец и пику: длинное древко с топоровидным лезвием, заканчивавшееся заостренным наконечником.

      27

      Время с одиннадцати вечера до часу ночи.

      28

      Тяньгоу (кит. 天狗) – «небесная собака»: в «Книге гор и морей» описывается как существо, напоминающее черную собаку с белой головой, которая поедает луну (во время затмения).

      29

      Легендарный талантливый лучник из царства Чу (эпоха Сражающихся царств 475–221 гг. до н. э.).

/9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAHgAA/+4ADkFkb2JlAGTAAAAAAf/bAIQAEAsLCwwLEAwMEBcPDQ8XGxQQEBQbHxcXFxcXHx4XGhoaGhceHiMlJyUjHi8vMzMvL0BAQEBAQEBAQEBAQEBAQAERDw8RExEVEhIVFBEUERQaFBYWFBomGhocGhomMCMeHh4eIzArLicnJy4rNTUwMDU1QEA/QEBAQEBAQEBAQEBA/8AAEQgBMwDUAwEiAAIRAQMRAf/EAIEAAAIDAQEBAAAAAAAAAAAAAAAFAwQGAgEHAQEAAAAAAAAAAAAAAAAAAAAAEAACAQMBBAYHBgQEBgIDAAABAgMAEQQhMUESBVFhcYEiE5GhMkJSFAaxwdFiciOCkjMV8OGywvGiQ1NjJHNEgzQWEQEAAAAAAAAAAAAAAAAAAAAA/9oADAMBAAIRAxEAPwD6BRRRQFFFFAUUUUBRRRQFFFFAUUUUBRRRQFFFFAUUUUBRRRQFFFFAUUUUBRRRQFFFFAUUUUBRRRQFFFFAUUUUBRRRQFFFFAVXy87Ewk48mVYwfZB9prfCo1NKfqP6gflZTGgS+RKvF5jeyi3tcDeayGXns5853Ms0l/Exue/oHVQaPmP1oItMOC998u0/wqdPTS3G+rueNIGYwvGNWUoQLHsN6QKjytxNrc2ud5/AVbmbyETgGl9eug0WJ9Qc2Znd2SRQVHAyhRdjbQrrT7F5vjzkJL+zIbCzHwkn4W/GsVy3MQyFGFvMGg/MNnpqTL5oY8pIY7GMDikuNt91B9BorF431kMJ2geFsiAW4H4rMvxCzDUd9aHlPP8Al/NiyYzMsqAM0cg4Wt0jaDQM6KKKAooooCiiigKKKKAooooCiiigKKKKAooooCiiigKKKX53POVYBZcjIUSLtiU8T/yr99Ar+scFJYIc1tkJKPrbwva3rrFTRFpAYAzodLhWNvVWl5v9VfPxNi4WOeAkHzZDY6H4B+NJJJ8gCzysXO0L4QPRQHl8RVYdCgsq7D66lyMXMMB87HkG8OFJHaeGuYczIUqDISoOzQm3fTXEz1iF5AyK+yeHZf8ANGfDfp0vQII7qNviG+ppmWWd5jpdQzdoGvrrSZUGJmwh5wssfuZWPYSA/mXX/G6szn47Y6kBxJHISqyLsNib36L2oKrBmXi2nS/adfvp79EIW5yzA6JA5PeyCkiSIsdtrHd0X1vT36JuvN3bYrxslusnjH+mg3tFFFAUUUUBRRRQFFFFAUUUUBRRRQFFFFAUUUUBUc88ONC887iOKMXZjsArp3VFLuQqqCWY6AAbzXz36l59JzObyYiVxIz+2nxHZxt91BNzj6szs6Rsfl5bHx72DLpI4+It7oPR6aTSJ5IBbxzPrc62vvrhZFgSy/1G1ZvurwSmScO2utrdVrUFzGaPh4V9raxO+oJHvMwNSqoU3XQ9VQZKNxeavfQdhuHxfDr6KtR5SwtcDjgk9uP7166XiUW6DXcTqwMZ7uz/ACoHSq8X7+HJdH1B3H9S9NVuZZCSY9jFwTF1uNsbX97qNQYeZJiScJ8Ube0p39fbTRm5fkpw8YBfc2hoERiA0FP/AKUXypmm0t5ir3W1/wBVKJsd8d+BtV9xukU55HYYrdbkn7PuoNrXtVcCfzoACfGnhP3GrVAUUUUBRRRQFFFFAUUUUBRRRQFFFFAUUVS5vzBeXYMmSdXHhiXpdtFoEH1dzjby6FvABxZJG/esf3msYWJJY+0asZkruSXbieQl5G3knU+k1BGvESxFwovrs6qDqHGebxHwp8R39lWjjQrGEIv0Dea5xkyJW8DEIvtMdg6hVkBQSdtt53230HEcPALFiV3A7R31IXiVPF0XsBevY4pTNKZRwrCh8J6SNpq5y/BbJid0sGFhrvA3eugWLHhySXCWJ3HQGvZcWIAFQUAN7jXhPTVyflygswBjdLnh3XGuyoZXbyCyi5I2UFZ49OFtb6hhs7RXCMfZbaPXUlwBZrmM69Y6+7fUc6FbA+1tVhsIoJQ/EvlMbg+zfc26m3J24I1U6BiwPbckVn1k4h0HfTflk6tHwbHU8VBoOU51siQNp5chik/Te6mtFWP5cUbm8+OdDkpdDu418Q9IBrUYExlgs3tx+Fr9VBZooooCiiigKKKKAooooCiiigKKKKDysT9W83ORlrhwm+NjMDKRqGkItu+G9u2tZm5LLw4uOR81Non5Bvc9lJOecoxsD6dnSAXfjjeWU+07cYFz6aDFyFXkDWuoGo6auJiMVjxxpJJ45T8IqLl8AnygGF408T9Fl/zp3yvEfJd57W803v8ACg2emggmRcbFtGLD2E++veXwqsL50oBjg/pqdjy+6OwVdzsQ5WQmPD7EfgUdZ9pjXfMYAPI5dCLRRWLHfc9Pdr30FXGxWbByZmuWeORyT2G3p21b+nlJxl6WufXTA4wjwpIwNTG1/wCU1X+m4iMUdSkDuY0HfNMZfBKo/K1Zjh8Lx/DcDuuK3GTB5sLR79q9o2VjMhDFlyoRoWvbqbWgjyYAfGux9T+oj/d9tU434wcaQW1PD0ginhxi3LYJV18yOx6nTT7qRZysJlkXQsAw7RQQTxNE1z6ekdNT4M/lzoT02PfpVqaNcnB85B7K+YttfZ0dTVVIfOgWSP8AqRmxHxDaKBt5/wAtzODI/wC2UY9gJv6q2UloMpchf6U9lfoudhr5+0vmcNzchLdwJrbcjyF5jyhY5Dd4/wBpzvuvsn0WoG9FQ4zs0fC/9SM8D9o399TUBRRRQFFFFAUUUUBRRRQFV8vJGOg4RxyyHhij6T+A31LNLHDE0shsiC5NJ8zz3VeK65mefKiXb5MJ9s9vDtoJOSwPJJPzKZzI0xKRH3eBTqy9THZ1AVPz2ITcnzEP/aZh2qOIfZV2GKOCJIYxwxxqFUdAAsKrc0y0xcUs6eaJCI+C9r8em3soMFhxiLCkexL5D+WoUXPCDr99aHF5jBBh+CB18tbW4bDi2KCaV/LpjmEx8Rglkk8tWAujW9kkE32HXTsqxk5eI8cWGr8ADK077LE7tdp30FnlmTCgkyMl+FzcRqVIFt/CbWuxqxgxNNM2RJ0k6bC2+qWbzLGkEOLiuBEpHExtoBsA13batJjtEPNw5QYlXiQppxAnUOnskjpoGhXiuvxaenSqXIVeKIwuLNGXU9zA/fVvDm89VcixvYjrFQ4hMfMJ4TtDsy/pccQoGVqyXP8AG4eaMUGkiK9uvUGtDlZ4hkWBCvnMVFmufaNrkLSnm6ZJy4zMIy3CQpS46DbxdlBNy2DzOSxxsNV8y3aHYisxzPH4bqfcY2/S3i9VabAypoMWQDHaWOORrlDci4V/Z16aScwngkyg6ghG8Lhhpw3t/pagV4mc2LFkQkXWdTwA+6/st6qjhuuLPwnUcLjtBriWOxI3g3H6hoa74rRSAbXUBR13oGsOOMqDMykI4lSHIsOhgRIPXemn0nleVlPAfYm/1DZUP0bDHIZseTxLJjlHHT4gD9tVuXxyY+dJCbrLAx/mjP30G3lPlSrN7j2STq+E/dU9RKUyccE6pIoPprzHdiDE5vJEeEnpG40E1FFFAUUUUBRRRQFFFVskvIwxYyVLi8jj3E/FtgoIwPnZw5//AFYG8A3SSD3v0ru66gwm+c5nkZdyYsceTD0X981Y5hMuFy92jshVeCIdBPhW3ZXnKIDBy+JWFmYcbdra691BdqnzXGbJwnVBeRCJIx+ZDe3fsq5RQYxYuOMMhIVHUtssHa6bOkioVihxTK8yMVmNsZzZw7LoeK/X6qvczRYfmJMfUM/hZRYcSvvG/UW7R115BhrPjpHL4kAEcS7NRqTcbhv6aBHl8vnEv7irGrAMpI232+umv0/j5OGZHluMYrxcIFlJ6QDTuDliBE8yRp+DVBIeJU7BUPMy0RjX3T4iekjd3UEnLLccgtYhgT2kV1kAxc0gl9yZeC/5l/yNR8s1jaT42JP8Pg+6rOfE0uNxxi80JEkdtt12jvFBU5vxA+XjrH8xL773FgOjh1J0pRktzABPmeB+Aj9xGJNwOEcQfXW9aLIjGVGkkZI4gHilXajbQRSnmksr4E8U8T/PEoVKISjlGBuGGy4FBSTnfyQlHCyiYBw3DxcJ4eDcfy1FkZGNn4hmi2qQWG9W9ltOg3vUIwnzslYEDA8NywNhw3vcdO2m8uLjpH8vEgIC+WCBqxPZ10GayociaZnxoHdZbWKLpxlQWHVY1BLi5WMUXJTy7g8IuDe2h2GnuK83yzLwlUjZlbhNmZttjv3201rnm/L3kwvnY1CpjHgewNjxkbCdvCdtAfSMvl8yjUnR+NPSOL7qY82xvlvqBJx7GWhP8aAKfVaknIJBHzDHYmwEy/8AN4a2XP8AGM2F5yC8uKwlXp4R7Y/loO+Uy3haI7UNx2GrM48t1yB7vhk/Qd/dSnlk4WdGB8Egt6dlPCARY6g0ACCLjZXtQwHgLQH3NUPSh2ejZU1AUUUUBRRRQFQIOHKlv/1FVlO/w+Eju++p6gyRw8E9rmI62+FtG/GgV/UDmWXFwl9p24j3ngX7TTpVCqFGwCw7qQ5knmfUUKboyi+ov99P6ArxrhSVF2toOuvapc15lFy3Ead9XPhiT4n3d3TQZXmS5GJjQ42XIHylLyCNNkfmEsxc7yx2U35YUljWZTcFRw/xC9JOXcuy+d5ckjsQhJaee2xjsCj7twq39P5PD5mI5s8RIA/Lf7jcUGjjcDwnZuqHLjjnUo4uu47x1ivQb17QRYRgEIEJBjXwix6KtrUEWLAWk8Ni+rWNurdU8UKQrwpe3WSftoCKNYl8tAFQElQN1zc+uideOF126Gu68JtQZyJzhTl1FhEGRif+1JZrj9NvVViNYppeN5CkURPiVrcTD3bioudSQYofJYhSp4AD73F7tt/TWXGdn8uEsGHO0cE547LY/wApOzuoL/OcxsCfJxYCVeRxIj3vwIy3P8WytPDgD/8AlVxG1LY3Eb6njYeZ/qr55ZpBwbWZtp1N20r61HGEhSLaFUL3AWoPmGNKYpAwNiLMO1TevqA4ZIxcXVxqDsIIr5pkY/kZeTj74mdR/C34Vv8Akc5yOU4sp9rywrdqeA/ZQJUibFnlw2uPIb9s9Mbaoa0WHP8AMY6SG3H7LgbmXQ0s59jlJIc9Bov7U9vgb2T3N9te8qn8vIMJ9iccQP51H3r9lAzyFICzLq0WtulT7QqVWDAMpuDqDRUMP7btjnYPFH+k7u40E9FFFAUUUUBXhAYFTsIsa9ooMuCy/USI9yyuqkneAgUHvrUVnufq2LzDEz1HhBAY9aHi/wBNaAEMAw1BFwaDmSRIo2kkYIiAlmOgAFYrImyfqLmqpECsQ0jB9yMe056z/lTD6q5lxocGJvBxATEe8w14O62tMfp3lfyOH5ki2yJ7M99qj3VoGGHhwYWOuPAvCi+kneT1mvn8mS0HMJMmDS0jnh3FSx0rf5+SuJhzZLbI0JHWdw7zXzaQ+HXaaDZ8tz4M6EPE3iGjKfaU9BFWJooSrPIDYC5ILA2H6TWFwsuTCyVnjPDufoK9dbfEy4syHjXRhpIm2xP2g7jQEEiBbxZiiPpkKs1u1rH01dTzrgllkQ7DbhNu64NU4OXQ+aZDqBawIF+ziqzPlw46FmYADp2CgmJqrl5kWMhLt4ty7T6BVDI5tkSAiECJNfGw8R7F/H0VQFyxdiXc7WY3JoFH1G2S7Y0091WYsUj3KFK7d3EaWg8UaxyaXuYmO4jSx6jTz6iyIZeX48CrxSwOGd/gvccPaaSZUYieOPbaJC3a44z9tB7gqDn4ysNDNGrD+MCvrFfLOW+WM3Hmn0jjlQs+7wsDc9lfUlZWUMpurC4I2EGgwHOIvK+ochW2O/EOx14q0f0lMW5dJjt7WPKy/wALeMfbSj6qj4OewSbpEQ+gstXfpeby83IxzsmQSL2xnhb1MKDR5EEeRC8EoukgKt31movOi4omt8xivYX2XXVT2GtTSbm2LwZCZiWCyDypf1e433eigawTLPCky7HANujpHdXOQrcIkT24jxAdI3r3il/J5+F3xWIAa8kfT+cff302oOPMTy/Nv4LcV+qiq3lP5ny9v2OLzL9W3g/mooLlFFFAUUUUEGbhw5uO2PMPC2wjarDYw7KWPn5HLsH5ScXy1HBA/uum6QH8o2inVZXmWUcvLdwbxJ4Ih1Dae8/dQR8twPnuYReYOKHH/dlLa8TH2Qe061raV/T8YXEeS3idzc9IUACmbukaNI54UQFmJ3Aak0Gf+rs3ggjwUPilPHIN/Avs+lvsrGysL9mnfV/mec2dmS5TbGNox0INFFRwYrPDGqi82ZKI4r7OBSOI/wAxA7jQL22005RmSqfKjfgnjBMLH2WXaY2G8VQyYvKnlivxGN2TiGl+E2vUaM8TrIjcLoeJW6CKDYLzXmBUoYo0vtcOT6uEVx5cjsJJn433dA/SN1dYix5+MJ4h5Mo8M0Le442jv2iuzG8fhcWNBG0akbL1VmYopVCFe2068IPVvPRU2VkCFQqi8r+wv+49QrmDC84jibiYgMSesXvbfegT58SnCfgv4CCbnU63vS6dScgqNpCAfyinc6L4kGqvpYbOilWcjxZC8VrqoAI38Hhv6qC7gww+dBDIOKJnVXHSCwvW1wMeTlrHFMhfFZv/AFi21L6lCfsrEo9isg2AhvQb19FKrIlmHErDZQZr6vgvPy6cbpGjbvHGP9NVeUyiDmeO7bGYxk/rFh67U659jq3L1LsWMMiuhbU31W1+w1nSxQiQC5QhgOtTeg3NcSxrLG0bbGFqI5FljSRdVcBl7CL13QZrjeGbiX+rA3EB6iO8XFaKKVJo1ljPEjgMp6jSLm0LQZZyF/p2BkH5WNuLuarnJ8i3Hisdl5I+jhJ8Q7j9tAzor2igKKKKAooooKnM5zj4E0qnhfh4VPQzeEfbWXWxUW2bqd/UjH5OJB78ov2KrN91Z9GZd1x0UGs5SgTl8I6QW/mJNJvqvmnCg5bCfE1mnIOxdoTv2/8AGrcvNY+X8pgK2bJkjHlR9o9puoVj5XeSRpJGLyOSWY7STQcLFJPLHBELySsFUdZp/wAthjyueQRxa42Alo+sJ73e7XpdyuHxyZGqlEYI/wAIC3kbuXQdtO/pKAXyMg+1