Рынок облигаций. Анализ и стратегии. Фрэнк Дж. Фабоцци. Читать онлайн. Newlib. NEWLIB.NET

Автор: Фрэнк Дж. Фабоцци
Издательство: ""Альпина Диджитал""
Серия:
Жанр произведения: Ценные бумаги, инвестиции
Год издания: 2007
isbn: 5-9614-0468-4
Скачать книгу
как это показано на рис. 4.3, вертикальную линию из любой точки доходности (на горизонтальной оси): расстояние между горизонтальной осью и касательной – это цена, аппроксимированная путем использования дюрации при начальной доходности у*. Аппроксимированный результат будет меньше реальной цены – феномен, который мы уже наблюдали, говоря об отношениях между дюрацией (касательной) и аппроксимированным ценовым изменением. При падении доходности предполагаемое изменение цены меньше реального – реальная цена, таким образом, недооценивается. И наоборот: если доходность растет, предполагаемое значение изменения цены будет больше, чем значение реального изменения – реальная цена опять окажется недооценена.

      При небольших изменениях доходности линия касательной и дюрация дают хорошую аппроксимацию реальной цены. В то же время, чем дальше от точки начальной доходности у*, тем хуже аппроксимация. Очевидно, что точность аппроксимации непосредственно связана с выпуклостью кривой, отражающей зависимость цена – доходность облигации.

      Измерение выпуклости

      Дюрация (модифицированная или долларовая) предполагает описание выпуклой функции с помощью прямой линии (касательной). Возможно ли найти математическую формулу, обеспечивающую лучшую аппроксимацию изменений цены на облигацию при изменении требуемой доходности?

      Попробуем применить первые два члена ряда Тейлора и аппроксимировать ценовые изменения следующим образом[23]:

      (4.15)

      Делим обе части равенства (4.15) на Р и получаем процентное изменение цены:

      (4.16)

      Первый член правой части равенства (4.15) – это выражение (4.14), т. е. долларовое изменение цены, измеренное на основе долларовой дюрации. Таким образом, первый член в выражении (4.15) – искомая аппроксимация абсолютных ценовых изменений на основе дюрации. В выражении (4.16) первый член правой части равенства – аппроксимация процентных изменений цены на основе модифицированной дюрации.

      Вторые члены выражений (4.15) и (4.16) включают вторую производную функции цены (уравнения (4.1)). Это та самая вторая производная, которую мы используем в качестве поправки для учета влияния выпуклости зависимости цена – доходность. Вторую производную цены принято называть долларовой мерой выпуклости облигации. Итак:

      (4.17)

      Произведение долларовой меры выпуклости и квадрата изменения требуемой доходности является предполагаемым ценовым изменением, обусловленным выпуклостью. Таким образом, аппроксимированное изменение цены, обусловленное выпуклостью, равно:

dP = долларовая мера выпуклости × (dy)2. (4.18)

      Вторая производная, поделенная на цену, – это мера процентного изменения цены облигации, обусловленного выпуклостью; ее называют просто мерой выпуклости. Итак:

      (4.19)

      А процентное изменение цены, обусловленное выпуклостью, равно:

       Скачать книгу


<p>23</p>

Ряд Тейлора, описание которого можно найти в учебниках по математическому анализу, используется для аппроксимации функций. В данном случае аппроксимируемой функцией является зависимость цены от доходности.