Обработка больших данных. Джейд Картер. Читать онлайн. Newlib. NEWLIB.NET

Автор: Джейд Картер
Издательство: Автор
Серия:
Жанр произведения:
Год издания: 2024
isbn:
Скачать книгу
5: Обеспечение отказоустойчивости

      Новые узлы также начинают участвовать в репликации данных. Если один из старых узлов выходит из строя, HDFS использует новые узлы для восстановления реплик, обеспечивая тем самым продолжение работы системы без потери данных.

      Добавление новых DataNodes позволяет кластеру HDFS увеличивать объем хранения и вычислительные мощности, одновременно поддерживая или даже улучшая производительность и отказоустойчивость системы.

      Таким образом, HDFS спроектирован таким образом, чтобы легко адаптироваться к изменениям в масштабах и потребностях хранилища, обеспечивая гибкость и устойчивость к масштабированию.

      4. Доступность данных:

      HDFS (Hadoop Distributed File System) – это распределенная файловая система, разработанная для хранения и обработки огромных объемов данных, особенно в масштабных кластерах. Одной из ключевых особенностей HDFS является его оптимизация для доступа к данным с высокой пропускной способностью. Это достигается за счет нескольких архитектурных решений, которые обеспечивают эффективное чтение и запись данных в условиях распределенной среды.

      Во-первых, HDFS хранит данные в крупных последовательных блоках, обычно размером по умолчанию в 128 МБ или более. Такие большие блоки позволяют минимизировать накладные расходы на управление файлами и сократить количество операций ввода-вывода. Благодаря этому данные могут считываться большими порциями, что значительно увеличивает скорость передачи данных по сети и снижает задержки. Это особенно важно при обработке больших данных, где операции считывания/записи должны быть максимально эффективными для обработки огромных объемов информации.

      Во-вторых, HDFS изначально разрабатывался с учетом того, что типичные рабочие нагрузки будут состоять из последовательного чтения больших объемов данных и минимального количества операций записи. В отличие от традиционных файловых систем, которые оптимизированы для частого и случайного доступа, HDFS предполагает, что данные записываются один раз и редко изменяются, а затем читаются множество раз. Это позволяет использовать стратегию "записать один раз – прочитать много раз" (Write Once, Read Many, или WORM), что также способствует оптимизации работы системы под большие объемы данных.

      Наконец, система HDFS предполагает пакетную обработку данных, при которой данные собираются и обрабатываются крупными партиями. Этот подход позволяет системе концентрироваться на эффективной обработке больших данных, а не на управлении мелкими файлами и операциями. В результате HDFS идеально подходит для анализа данных в системах, таких как Hadoop, где важна высокая пропускная способность при работе с большими объемами информации.

      5. Архитектура «мастер-слейв»:

      HDFS (Hadoop Distributed File System) использует архитектуру "мастер-слейв", которая обеспечивает эффективное управление и хранение данных в распределенной среде. В этой архитектуре основной сервер, называемый NameNode, играет роль центрального управляющего узла, который отвечает за все метаданные файловой системы. Метаданные включают