800
Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables of glycemic index and glycemic load values: 2008. Diabetes Care. 2008;31(12):2281–3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584181/
801
Brand JC, Nicholson PL, Thorburn AW, Truswell AS. Food processing and the glycemic index. Am J Clin Nutr. 1985;42(6):1192–6. https://pubmed.ncbi.nlm.nih.gov/4072954/
802
Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables of glycemic index and glycemic load values: 2008. Diabetes Care. 2008;31(12):2281–3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584181/
803
Mofidi A, Ferraro ZM, Stewart KA, et al. The acute impact of ingestion of sourdough and whole-grain breads on blood glucose, insulin, and incretins in overweight and obese men. J Nutr Metab. 2012;2012:184710. https://pubmed.ncbi.nlm.nih.gov/22474577/
804
Scazzina F, Siebenhandl-Ehn S, Pellegrini N. The effect of dietary fibre on reducing the glycaemic index of bread. Br J Nutr. 2013;109(7):1163–74. https://pubmed.ncbi.nlm.nih.gov/23414580/
805
Jenkins DJ, Wesson V, Wolever TM, et al. Wholemeal versus wholegrain breads: proportion of whole or cracked grain and the glycaemic response. BMJ. 1988;297(6654):958–60. https://pubmed.ncbi.nlm.nih.gov/3142566/
806
Breen C, Ryan M, Gibney MJ, Corrigan M, O’Shea D. Glycemic, insulinemic, and appetite responses of patients with type 2 diabetes to commonly consumed breads. Diabetes Educ. 2013;39(3):376–86. https://pubmed.ncbi.nlm.nih.gov/23482513/
807
Reynolds AN, Mann J, Elbalshy M, et al. Wholegrain particle size influences postprandial glycemia in type 2 diabetes: a randomized crossover study comparing four wholegrain breads. Dia Care. 2020;43(2):476–9. https://pubmed.ncbi.nlm.nih.gov/31744812/
808
Burton P, Lightowler HJ. The impact of freezing and toasting on the glycaemic response of white bread. Eur J Clin Nutr. 2008;62(5):594–9. https://pubmed.ncbi.nlm.nih.gov/17426743/
809
Scazzina F, Siebenhandl-Ehn S, Pellegrini N. The effect of dietary fibre on reducing the glycaemic index of bread. Br J Nutr. 2013;109(7):1163–74. https://pubmed.ncbi.nlm.nih.gov/23414580/
810
Yadav BS, Sharma A, Yadav RB. Studies on effect of multiple heating/cooling cycles on the resistant starch formation in cereals, legumes and tubers. Int J Food Sci Nutr. 2009;60 Suppl 4:258–72. https://pubmed.ncbi.nlm.nih.gov/19562607/
811
de Morais Cardoso L, Pinheiro SS, Martino HSD, Pinheiro-Sant’Ana HM. Sorghum (Sorghum bicolor L.): nutrients, bioactive compounds, and potential impact on human health. Crit Rev Food Sci Nutr. 2017;57(2):372–90. https://pubmed.ncbi.nlm.nih.gov/25875451/
812
Narayanan J, Sanjeevi V, Rohini U, Trueman P, Viswanathan V. Postprandial glycaemic response of foxtail millet dosa in comparison to a rice dosa in patients with type 2 diabetes. Indian J Med Res. 2016;144(5):712–7. https://pubmed.ncbi.nlm.nih.gov/28361824/
813
Poquette NM, Gu X, Lee SO. Grain sorghum muffin reduces glucose and insulin responses in men. Food Funct. 2014;5(5):894–9. https://pubmed.ncbi.nlm.nih.gov/24608948/
814
Abdelgadir M, Abbas M, Järvi A, Elbagir M, Eltom M, Berne C. Glycaemic and insulin responses of six traditional Sudanese carbohydrate-rich meals in subjects with Type 2 diabetes mellitus. Diabet Med. 2005;22(2):213–7. https://pubmed.ncbi.nlm.nih.gov/15660741/
815
Chen Z, Glisic M, Song M, et al. Dietary protein intake and all-cause and cause-specific mortality: results from the Rotterdam Study and a meta-analysis of prospective cohort studies. Eur J Epidemiol. 2020;35(5):411–29. https://pubmed.ncbi.nlm.nih.gov/32076944/
816
Mazidi M, Katsiki N, Mikhailidis DP, Pella D, Banach M. Potato consumption is associated with total and cause-specific mortality: a population-based cohort study and pooling of prospective studies with 98,569 participants. Arch Med Sci. 2020;16(2):260–72. https://pubmed.ncbi.nlm.nih.gov/32190135/
817
Fernandes G, Velangi A, Wolever TMS. Glycemic index of potatoes commonly consumed in North America. J Am Diet Assoc. 2005;105(4):557–62. https://pubmed.ncbi.nlm.nih.gov/15800557/
818
Johnston CS, Steplewska I, Long CA, Harris LN, Ryals RH. Examination of the antiglycemic properties of vinegar in healthy adults. Ann Nutr Metab. 2010;56(1):74–9. https://pubmed.ncbi.nlm.nih.gov/20068289/
819
Leeman M, Östman E, Björck I. Vinegar dressing and cold storage of potatoes lowers postprandial glycaemic and insulinaemic responses in healthy subjects. Eur J Clin Nutr. 2005;59(11):1266–71. https://pubmed.ncbi.nlm.nih.gov/16034360/
820
Grussu D, Stewart D, McDougall GJ. Berry polyphenols inhibit a-amylase in vitro: identifying active components in rowanberry and raspberry. J Agric Food Chem. 2011;59(6):2324–31. https://pubmed.ncbi.nlm.nih.gov/21329358/
821
Sharma KK, Gupta RK, Gupta S, Samuel KC. Antihyperglycemic effect of onion: effect on fasting blood sugar and induced hyperglycemia in man. Indian J Med Res. 1977;65(3):422–9. https://pubmed.ncbi.nlm.nih.gov/336527/
822
Haldar S, Chia SC, Lee SH, et al. Polyphenol-rich curry made with mixed spices and vegetables benefits glucose homeostasis in Chinese males (Polyspice Study): a dose-response randomized controlled crossover trial. Eur J Nutr. 2019;58(1):301–13. https://pubmed.ncbi.nlm.nih.gov/29236165/
823
Azzeh FS. Synergistic effect of green tea, cinnamon and ginger combination on enhancing postprandial blood glucose. Pak J Biol Sci. 2013;16(2):74–9. https://pubmed.ncbi.nlm.nih.gov/24199490/
824
Hajizadeh-Sharafabad F, Varshosaz P, Jafari-Vayghan H, Alizadeh M, Maleki V. Chamomile (Matricaria recutita L.) and diabetes mellitus, current knowledge and the way forward: a systematic review. Complement Ther Med. 2020;48:102284. https://pubmed.ncbi.nlm.nih.gov/31987240/
825
Rafraf M, Zemestani M, Asghari-Jafarabadi M. Effectiveness of chamomile tea on glycemic control and serum lipid profile in patients with type 2 diabetes. J Endocrinol Invest. 2015;38(2):163–70. https://pubmed.ncbi.nlm.nih.gov/25194428/
826
Kermanian S, Mozaffari-Khosravi H, Dastgerdi G, Zavar-Reza J, Rahmanian M. The effect of chamomile tea versus black tea on glycemic control and blood lipid profiles in depressed patients with type 2 diabetes: a randomized clinical trial. JNFS, 2018;3(3):157–66. https://jnfs.ssu.ac.ir/article-1-197-en.pdf
827
Rafraf M, Zemestani M, Asghari-Jafarabadi M. Effectiveness of chamomile tea on glycemic control and serum lipid profile in patients with type 2 diabetes. J Endocrinol Invest. 2015;38(2):163–70. https://pubmed.ncbi.nlm.nih.gov/25194428/
828
Pirouzpanah S, Mahboob S, Sanayei M, Hajaliloo M, Safaeiyan A. The effect of chamomile tea consumption on inflammation among rheumatoid arthritis patients: randomized clinical trial. Prog Nutr. 2017;19(1-S)27–33. https://doi.org/10.23751/PN.V19I1-S.5171
829
Chang SM, Chen CH. Effects of an intervention with drinking chamomile tea on sleep quality and depression in sleep disturbed postnatal women: a randomized controlled trial. J Adv Nurs. 2016;72(2):306–15. https://pubmed.ncbi.nlm.nih.gov/26483209/
830
Zemestani M, Rafraf M, Asghari-Jafarabadi M. Chamomile tea improves glycemic indices and antioxidants status in patients with type 2 diabetes mellitus. Nutrition. 2016;32(1):66–72. https://pubmed.ncbi.nlm.nih.gov/26437613/
831
Villa-Rodriguez JA, Aydin E, Gauer JS, Pyner A, Williamson G, Kerimi A. Green and chamomile teas, but not acarbose, attenuate glucose and fructose transport via inhibition of GLUT2 and GLUT5. Mol Nutr Food Res. 2017;61(12):1700566. https://pubmed.ncbi.nlm.nih.gov/28868668/
832
Bowen AJ, Reeves RL. Diurnal variation in glucose tolerance. Arch Intern Med. 1967;119(3):261–4. https://pubmed.ncbi.nlm.nih.gov/6019944/