278
Grosso G, Godos J, Galvano F, Giovannucci EL. Coffee, caffeine, and health outcomes: an umbrella review. Annu Rev Nutr. 2017;37:131–56. https://pubmed.ncbi.nlm.nih.gov/28826374/
279
Thomas DR, Hodges ID. Dietary research on coffee: improving adjustment for confounding. Curr Dev Nutr. 2020;4(nzz142). https://pubmed.ncbi.nlm.nih.gov/31938763/
280
Duregon E, Bernier M, de Cabo R. A glance back at the journal of gerontology – coffee, dietary interventions and life span. J Geront A Biol Sci Med Sci. 2020;75(11):2029–30. https://pubmed.ncbi.nlm.nih.gov/33057720/
281
Li Q, Liu Y, Sun X, et al. Caffeinated and decaffeinated coffee consumption and risk of all-cause mortality: a dose – response meta-analysis of cohort studies. J Hum Nut Diet. 2019;32(3):279–87. https://pubmed.ncbi.nlm.nih.gov/30786114/
282
Spiegelhalter D. Using speed of ageing and “microlives” to communicate the effects of lifetime habits and environment. BMJ. 2012 Dec 14;345:e8223. https://pubmed.ncbi.nlm.nih.gov/23247978/
283
Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ. 2017;359:j5024. https://pubmed.ncbi.nlm.nih.gov/29167102/
284
Loftfield E, Cornelis MC, Caporaso N, Yu K, Sinha R, Freedman N. Association of coffee drinking with mortality by genetic variation in caffeine metabolism: findings from the UK Biobank. JAMA Intern Med. 2018;178(8):1086. https://pubmed.ncbi.nlm.nih.gov/29971434/
285
Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ. 2017;359:j5024. https://pubmed.ncbi.nlm.nih.gov/29167102/
286
Gao LJ, Dai Y, Li XQ, Meng S, Zhong ZQ, Xu SJ. Chlorogenic acid enhances autophagy by upregulating lysosomal function to protect against SH-SY5Y cell injury induced by H2O2. Exp Ther Med. 2021;21(5):426. https://pubmed.ncbi.nlm.nih.gov/33747165/
287
Ludwig IA, Mena P, Calani L, et al. Variations in caffeine and chlorogenic acid contents of coffees: what are we drinking? Food Funct. 2014;5(8):1718–26. https://pubmed.ncbi.nlm.nih.gov/25014672/
288
Mills CE, Oruna-Concha MJ, Mottram DS, Gibson GR, Spencer JPE. The effect of processing on chlorogenic acid content of commercially available coffee. Food Chem. 2013;141(4):3335–40. https://pubmed.ncbi.nlm.nih.gov/23993490/
289
Ludwig IA, Mena P, Calani L, et al. Variations in caffeine and chlorogenic acid contents of coffees: what are we drinking? Food Funct. 2014;5(8):1718–26. https://pubmed.ncbi.nlm.nih.gov/25014672/
290
Corrêa TAF, Monteiro MP, Mendes TMN, et al. Medium light and medium roast paper-filtered coffee increased antioxidant capacity in healthy volunteers: results of a randomized trial. Plant Foods Hum Nutr. 2012;67(3):277–82. https://pubmed.ncbi.nlm.nih.gov/22766993/
291
DiBaise JK. A randomized, double-blind comparison of two different coffee-roasting processes on development of heartburn and dyspepsia in coffee-sensitive individuals. Dig Dis Sci. 2003;48(4):652–6. https://pubmed.ncbi.nlm.nih.gov/12741451/
292
Liu J, Wang Q, Zhang H, Yu D, Jin S, Ren F. Interaction of chlorogenic acid with milk proteins analyzed by spectroscopic and modeling methods. Spectrosc Lett. 2016;49(1):44–50. https://www.tandfonline.com/doi/full/10.1080/00387010.2015.1066826
293
Duarte GS, Farah A. Effect of simultaneous consumption of milk and coffee on chlorogenic acids’ bioavailability in humans. J Agric Food Chem. 2011;59(14):7925–31. https://pubmed.ncbi.nlm.nih.gov/21627318/
294
Lorenz M, Jochmann N, von Krosigk A, et al. Addition of milk prevents vascular protective effects of tea. Eur Heart J. 2007;28(2):219–23. https://pubmed.ncbi.nlm.nih.gov/17213230/
295
Serafini M, Testa MF, Villaño D, et al. Antioxidant activity of blueberry fruit is impaired by association with milk. Free Radic Biol Med. 2009;46(6):769–74. https://pubmed.ncbi.nlm.nih.gov/19135520/
296
Serafini M, Bugianesi R, Maiani G, Valtuena S, De Santis S, Crozier A. Plasma antioxidants from chocolate. Nature. 2003;424(6952):1013. https://pubmed.ncbi.nlm.nih.gov/12944955/
297
Budryn G, Palecz B, Rachwal-Rosiak D, et al. Effect of inclusion of hydroxycinnamic and chlorogenic acids from green coffee bean in ß-cyclodextrin on their interactions with whey, egg white and soy protein isolates. Food Chem. 2015;168:276–87. https://pubmed.ncbi.nlm.nih.gov/25172711/
298
Felberg I, Farah A, Monteiro M, et al. Effect of simultaneous consumption of soymilk and coffee on the urinary excretion of isoflavones, chlorogenic acids and metabolites in healthy adults. J Funct Foods. 2015;19:688–99. https://www.sciencedirect.com/science/article/pii/S1756464615004910?via%3Dihub
299
Colombo R, Papetti A. An outlook on the role of decaffeinated coffee in neurodegenerative diseases. Crit Rev Food Sci Nutr. 2020;60(5):760–79. https://pubmed.ncbi.nlm.nih.gov/30614247/
300
Tverdal A, Selmer R, Cohen JM, Thelle DS. Coffee consumption and mortality from cardiovascular diseases and total mortality: does the brewing method matter? Eur J Prev Cardiol. 2020;27(18):1986–93. https://pubmed.ncbi.nlm.nih.gov/32320635/
301
Aubin HJ, Luquiens A, Berlin I. Letter by Aubin et al regarding article, “Association of coffee consumption with total and cause-specific mortality in 3 large prospective cohorts.” Circulation. 2016;133(20):e659. https://pubmed.ncbi.nlm.nih.gov/27185028/
302
Sakaki JR, Melough MM, Provatas AA, Perkins C, Chun OK. Evaluation of estrogenic chemicals in capsule and French press coffee using ultra-performance liquid chromatography with tandem mass spectrometry. Toxicol Rep. 2020;7:1020–4. https://pubmed.ncbi.nlm.nih.gov/32874926/
303
Yang CZ, Yaniger SI, Jordan VC, Klein DJ, Bittner GD. Most plastic products release estrogenic chemicals: a potential health problem that can be solved. Environ Health Perspect. 2011;119(7):989–96. https://pubmed.ncbi.nlm.nih.gov/21367689/
304
Sakaki JR, Melough MM, Provatas AA, Perkins C, Chun OK. Evaluation of estrogenic chemicals in capsule and French press coffee using ultra-performance liquid chromatography with tandem mass spectrometry. Toxicol Rep. 2020;7:1020–4. https://pubmed.ncbi.nlm.nih.gov/32874926/
305
Li M, Wang M, Guo W, Wang J, Sun X. The effect of caffeine on intraocular pressure: a systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol. 2011;249(3):435–42. https://pubmed.ncbi.nlm.nih.gov/20706731/
306
Kang JH, Willett WC, Rosner BA, Hankinson SE, Pasquale LR. Caffeine consumption and the risk of primary open-angle glaucoma: a prospective cohort study. Invest Ophthalmol Vis Sci. 2008;49(5):1924–31. https://pubmed.ncbi.nlm.nih.gov/18263806/
307
Gleason JL, Richter HE, Redden DT, Goode PS, Burgio KL, Markland AD. Caffeine and urinary incontinence in US women. Int Urogynecol J. 2013;24(2):295–302. https://pubmed.ncbi.nlm.nih.gov/22699886/
308
Davis NJ, Vaughan CP, Johnson TM, et al. Caffeine intake and its association with urinary incontinence in United States men: results from National Health and Nutrition Examination Surveys 2005–2006 and 2007–2008. J Urol. 2013;189(6):2170–4. https://pubmed.ncbi.nlm.nih.gov/23276513/
309
Bonilha L, Li LM. Heavy coffee drinking and epilepsy. Seizure. 2004;13(4):284–5. https://pubmed.ncbi.nlm.nih.gov/15121141/
310
Surdea-Blaga T, Negrutiu DE, Palage M, Dumitrascu DL. Food and gastroesophageal reflux disease. Curr Med Chem. 2019;26(19):3497–511. https://pubmed.ncbi.nlm.nih.gov/28521699/
311
Lloret-Linares