Этот пример демонстрирует, как создать простую GAN для генерации рукописных цифр из набора данных MNIST. Модель может быть улучшена за счет добавления дополнительных слоев, настройки гиперпараметров и использования более сложных архитектур.
8. Построение сложной GAN для генерации реалистичных изображений
– Задача: Генерация изображений лиц.
Для создания сложной генеративно-состязательной сети (GAN) для генерации реалистичных изображений лиц можно использовать библиотеку TensorFlow и Keras. Мы будем использовать улучшенную архитектуру GAN, известную как DCGAN (Deep Convolutional GAN), которая доказала свою эффективность в создании реалистичных изображений. Набор данных CelebA, содержащий фотографии лиц знаменитостей, является хорошим выбором для этой задачи.
Шаги:
1. Импорт библиотек и модулей.
2. Подготовка данных.
3. Построение генератора.
4. Построение дискриминатора.
5. Построение и компиляция GAN.
6. Обучение GAN.
7. Генерация изображений.
Пример кода:
```python
import tensorflow as tf
from tensorflow.keras import layers, models
import numpy as np
import os
import matplotlib.pyplot as plt
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# Шаг 1: Импорт библиотек
import tensorflow as tf
from tensorflow.keras import layers, models
import numpy as np
import matplotlib.pyplot as plt
import os
# Шаг 2: Подготовка данных
# Загрузка набора данных CelebA
# Этот пример предполагает, что данные находятся в папке 'img_align_celeba/img_align_celeba'
# Скачивание и подготовка данных не входит в код
DATA_DIR = 'img_align_celeba/img_align_celeba'
IMG_HEIGHT = 64
IMG_WIDTH = 64
BATCH_SIZE = 128
BUFFER_SIZE = 60000
def load_image(image_path):
image = tf.io.read_file(image_path)
image = tf.image.decode_jpeg(image, channels=3)
image = tf.image.resize(image, [IMG_HEIGHT, IMG_WIDTH])
image = (image – 127.5) / 127.5 # Нормализация изображений в диапазоне [-1, 1]
return image
def load_dataset(data_dir):
image_paths = [os.path.join(data_dir, img) for img in os.listdir(data_dir)]
image_dataset = tf.data.Dataset.from_tensor_slices(image_paths)
image_dataset = image_dataset.map(load_image, num_parallel_calls=tf.data.experimental.AUTOTUNE)
image_dataset = image_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE).prefetch(tf.data.experimental.AUTOTUNE)
return image_dataset
train_dataset = load_dataset(DATA_DIR)
# Шаг 3: Построение генератора
def build_generator():
model = models.Sequential()
model.add(layers.Dense(8 * 8 * 256, use_bias=False, input_shape=(100,)))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Reshape((8, 8, 256)))
assert model.output_shape == (None, 8, 8, 256) # Убедитесь, что выходная форма такая
model.add(layers.Conv2DTranspose(128, (5, 5), strides=(2, 2), padding='same', use_bias=False))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
assert model.output_shape == (None, 16, 16, 128)
model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
assert model.output_shape == (None, 32, 32, 64)
model.add(layers.Conv2DTranspose(3, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 64, 64, 3)
return model
# Шаг 4: Построение дискриминатора
def build_discriminator():
model = models.Sequential()
model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[64, 64, 3]))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(256, (5, 5), strides=(2, 2), padding='same'))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Flatten())
model.add(layers.Dense(1,