При написании книги учтено, что почти в каждой науке есть две части – эмпирическая и теоретическая. В эмпирической части описываются факты и даются некоторые их обобщения. В теоретической – модели, являющиеся упрощениями и, как правило, искажениями фактических данных. В логике тоже есть такие части. В процессе преподавания иногда излагается или первая часть (это, в основном, так называемая традиционная логика), или вторая часть – модели (в основном, логика символическая, или математическая). В учебнике предпринята попытка соединить эти части.
При написании книги ставилась задача не только изложить проблемы логики, но и познакомить читателя с проблемами научного познания на примере логики.
УДК 16(075.8)
ББК 87.4я73
© Ивлев Ю. В., 2016
© ООО «Проспект», 2016
Предисловие
Эта небольшая книга предназначена для широкого круга читателей. Во-первых, она полезна для тех, кто не изучал логику в качестве учебной дисциплины, как для взрослых, так и для детей. Дети могут изучать логику самостоятельно, а могут и под руководством родителей или учителей. Во-вторых, она позволит повторить основные методы и приемы логики тем, кто логику изучал. В этом случае будет полезно познакомиться с последними научными достижениями в области логики, которые, по возможности, представлены в книге. В-третьих, она полезна преподавателям логики, поскольку в ней излагается концепция логики, разработанная автором этой книги, который много лет ведет преподавательскую и научную работу в области логики (является лауреатом Ломоносовской премии за учебники по логике, более 20 лет заведовал кафедрой логики МГУ им. М. В. Ломоносова). В-четвертых, книга нужна магистрантам, не изучавшим логику в бакалавриате и продолжающим учебу на факультетах, где основная часть студентов логику изучала.
При написании книги учтено, что почти в каждой науке есть две части – эмпирическая и теоретическая. В эмпирической части описываются факты и даются некоторые их обобщения. В теоретической – модели, являющиеся упрощениями и, как правило, искажениями фактических данных. В логике тоже есть такие части. В процессе преподавания иногда излагается или первая часть (это, в основном, так называемая традиционная логика), или вторая часть – модели (в основном, логика символическая, или математическая). В книге предпринята попытка соединить эти части.
При написании книги ставилась задача не только изложить проблемы логики, но и познакомить читателя с проблемами научного познания на примере логики.
Как решать задачи
Перед нами уже стоит задача. Каков смысл выражения «Как решать задачи»? Что это – вопрос или нет? В конце этого выражения (заглавия) нет ни знака вопроса, ни точки. Читатель может сказать: «Пусть ответит тот, кто написал это». Будет читатель прав или нет?
Как быть, если того, кто это написал, нет поблизости? Нужно использовать имеющееся знание о том, что в заглавиях точка может опускаться, а вопросительный знак – нет. При использовании этого знания смысл заглавия заключается в том, что в тексте излагаются способы решения задач. Если же указанного исходного знания нет, то нужно предположить две возможности понимания заглавия. Первая – названная. Вторая – в тексте речь будет идти о пояснении вопроса «Как решать задачи?», например, о том, какие трудности возникают при решении задач.
Будем говорить о трудностях, которые возникают при решении задач, а также о методах решения.
Некоторые люди плохо решают задачи. По каким причинам?
Первая причина. Для решения задачи нужны определенные знания. В данном случае нужно было знать, что в заглавии точка может не ставиться, если заглавие выражает утверждение. Если же заглавие выражает вопрос, то нужно ставить знак вопроса (?).
Еще примеры.
Первый. Стоянка ограничена бетонными столбами:
Расстояние между столбами по горизонталям и вертикалям – 8 м. Как увеличить площадь стоянки для автомобилей на 50%, не повреждая бетонные столбы? Есть условия: для стоянки автомобиля нужно расстояние длиной 3,5 м; увеличение площади может производиться только на запад, автомобили могут въезжать и выезжать только с севера. Для решения задачи можно использовать знание «площадь прямоугольника равна произведению величины его длины на величину его ширины». Решите задачу.
Второй. Шесть школьников нашли по пять грибов каждый. Сколько всего грибов нашли школьники? Возможны два решения. Первое – умножаем 6 на 5. Второе – производим сложение: 5 + 5 + 5 + 5 + 5 + 5.
Вторая причина. Ученики не понимают смысл задачи. Чтобы понять смысл