Data Science. Практика. NemtyrevAI. Читать онлайн. Newlib. NEWLIB.NET

Автор: NemtyrevAI
Издательство: Автор
Серия:
Жанр произведения:
Год издания: 2024
isbn:
Скачать книгу
= "Это пример текста. Он содержит несколько слов, и некоторые слова повторяются."

      word_freq = analyze_word_frequency(text)

      # Вывод наиболее часто встречающихся слов

      most_common_words = word_freq.most_common(5)

      for word, frequency in most_common_words:

      print(f"{word}: {frequency}")

      # Визуализация частоты слов

      word_freq.plot(30, cumulative=False)

      plt.show()

      ```

      В этом примере также используется библиотека NLTK. Функция `analyze_word_frequency` принимает текст в качестве аргумента. Текст токенизируется с помощью `word_tokenize`, а затем вычисляется частота встречаемости слов с использованием `FreqDist`.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «Литрес».

      Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCAhhBdwDASIAAhEBAxEB/8QAGwAAAwEBAQEBAAAAAAAAAAAAAQIDAAQFBgf/xAAZAQEBAQEBAQAAAAAAAAAAAAAAAQIDBAX/2gAMAwEAAhADEAAAAfgiG2DY6Y47ZttTYmhia2J0C6GGnt5rhjG2IMdQDLDFX0BGpmQV0Px7TtHK+lSlNntBdu5vNbrO6Avtwp6U+Tkpo81ApijRp0UQnaDgcS8vZy8atY05OpGT1TnR08dt6flep7Cnb0RcdBV1qUqrwc1J042mx7JErieqiz96rK1HbaAZcg6tAxAFYZbZiItPKMry4FFNkpLUXm21MH2Va6oDoEc+uuUs4hScZga2LaKTqwKhAEE4gOASoCMQbTheQp4aWDRjtRVkKAjcqNugKRkqOnK1vC/eLitWjeOlXnTaNZ1jHbZubp5sXndH8xKzroAW1KPh2o2ZMrSl5ZUn4hOMYMtdFebo9E42x4XHHbMG1AcdMcaxO009zc6U28zA6NtjNjoMdSqwwFJtVFoOpCHhA4hMRkWUjVkNuw8L7XV69JK85avcOG3QYdhOA9PPxlH5nqsyKbm6Ey5WG8t6Rh6JBHTzVvU8r0vQsrr7IARDq2rnOPJxUKea1edOsE7LTyRMvTrzdXtAMnRPSpxOQdsCADbIOjhGOko9a83G7LyEU2isrGz7QMopyhpsMEHADAXNhcRGDCEDmELGkzgXNgbYGXnwrxhfHds3JnzdS4gysmVMG6R9t0LtskR05Wt427wKy6XlRNDWVdJWjaMQ3Rubo5+dgynzNRW2F536MjDYsBUxm5zkj08/lrYGCpBaqP6JzkNyuIbTENqYhtM2OgQ8vOhcfKBxBiK2zGY7rFzLCYrzu20XK09CYrKGWi2IHGKuOjOjGWuqTAR024G6O2ev2cj3mUfjbZ+fs0nEXlxVaNKjO8eNqUbcilE4Ud/B1dHoA76BVpNH2NsVrHlBy93FwtKxrT7N1nPLqlxp9Lx/T7rSrz+mcvVw9/mORvSGU5A7Csph9toSGtSHUuXO6UxFWopHAh8G2VaaJaoiYoITOBcxJis8DTkXLu3NbocbbDZYOnHm6J80uCksfPQWakctubEaKCMUKRzGkq9DFW6xRtlNWXlbWlTvCrLpRWXQ1lWpWjesQ2yQtz8rE7edQ49FXG7AwatzV5+azB9SHH6PDwqlW4Btq6KK3qnORuNLg6ZgdQnHbY88Tnj47tibbVtmA+boGI1Ah2KEdObbaKX5+juMeiG44YksdkuZYBKZrUUU87rUg+yk4TLut5lO7uQ07OVrTh5zonOOzn5lQ7nVZTCI6cwpMx678/R9MEolZ50pebr5ecfl6pc0KwtxtmR/RNOyryPTl4PYlzdnseV6Pm9nmdWw905a8d/K6SD6C7aGZH0zA6p2audbcnGdJzdKi1WJMyZjFNT4atjgZgAERtsZH2XFD04+dxlJ+a3WWyYYxjmoNjuEg7bDDJtm5WTIAjA1nTobbdYoIxUG3Nas39EIIplZaaiNotpV0zKdVeTs4eAEPxG0r9hG3QW0CVIdXFqSftGhfV5o74eS816PoGE+smMeFoDukJDVmG0XjpLy3HbmJx22Y6gJ22IFFc2Shp5KDuVG2G6Obq7K8/RHtC2ao5hgAwAr6WbpTm1o16FSyQs66ObOnIerkOnqpxeh6w5+gac1X58wx6NlzBxyTSk+VAOw7O7y/S9xgd6EbRrk3P0TqJWnKefZD5rd5V9EchulTk7ocnH28m4HGkes3L1fQnn7o4vHfTKt7ZgQZtqZlOqWBrcPevNx9fmdPJ1g70gtBElsIlqCRCcAHQNhBy4bJhwhhOH0E4POLJ4axVtCytuZsdgSdEWiwmZOdy48wBUpRKdoVZdgjpzqkHC7A+mEbDK86rsKeitu4Mug4Ovk8wujYVsp9DMr0vDWHBXojfcMqjbPzOdCy1OiR5mjSnKwrG0MQeszq2mSnLlHBvHcdqx2pim0oFNHFtQYpSrhxp20LiIPXydnZSF494zY1NWTBgcK2wiVlztXQ6VyvtFscFh0plz4nmDo1ehTzOv1KO8eqC90MElrZnPHqnyvLrR84+l5nX1egAfoJ55Zl1J3eRwOElDs4fPemsX6q0Q9jHGuCfZzeQqO3MvoeZ0dnb5np8fWV6ODu2YY9hwasytaWB0zqxy+Z7vF5Uezx6cnr7n6PayvqTEiCiwgoIQPpEDrCK4yTNoRaiOOPoz87j1J8KSMOV2o7SOlQrbZXUmlJ+eqCvNaiN6YVZa03nzudaSUIPoA7U86TLKwqp263YGOSLDxi622qCO4q/HlNg3mNfmv2jum7Nz9Wy4t1LzQpRtAdujz78/T46SG7TMr7Dj7OHhRtvObbUSraEg7ZgdQ4ahNl53YjLAgAIwbt5O30tG0ukodtOcDcFCD1bYizqmApK2adk2tHoiPgTmHRz8mJ0bM2j9/lU7OqlOfsHN2rEAr4kpdcud43vz8HpU4+r2qc9l6DTm6CUerkwpw93NxLbl6cKUjb0RylOlPB3S5uXHeck+qMXrw9HVzehxVk7SG94HYIbKXjSn2NHYy+d5/0fF5J5PVBfO9SvkH0vY3lW27xzHa+5Vy69xrHYOQR1jmJYSWSy88+bsbgY7ObPLxDq5fKJUYVaJq2m2ztM9IyMFklZ8FmVu0w2pBjzpdabhIPVsdTToo7LTZxhuhW58Odkfxn6IdHoYg9C8N4+Y5xRLRfSxRuwsop8ho4Y2wjz+nl6PFaEH0RmVthw9/FxqEbzCdqxB0JDaYjamB2aubQu2MMAAjC/VG3raVZWVBG3IVPktjj6IDtWR0ySs350hhpXTvtz0R8jy9UMhici+facuqQnp+TTTtNY+huXsWOasdzAdMCPTIYdNOe/dG6LF+XrltFSeM4OrnfzXoI3oXaNOsoy7d5F7OLzHK0OfWXDnF+fm9O3l+l74xx7scFIbGpJijTemZWl5fJ+h5/PPDWnP4gG3BiDQxIubAxNLmNJqEkLAlqpkpwiwlToTbc22xiMO022fDbBGXmsQe0UFYDpdUolOkBDaBkrSMlDWm/RlZKbh6uHz1mV+St5v6m2kczJXygQ3SLWbVTKegsupspBtjbCOCkz4b1mdPVC6NsYXBwaieK5kYcMehGUhIOodhaVAwIIgAiAVtHSSPbDNxBBWuYMnlvSQ3pgOwFYZISMHVltXu8/v0gKRLSokSpK+BdK9TJUbcCinmP6fjdHZ1NWHoNx9my4unlPMV6+axb8z5dfPYdbQxvtyF58nNHs4vI7W5+jqFEHSXrzv0ryqTjYbgtFqbSlbYcPZKPJ7TcHb9I+w6CyOANjFSOylaNF4h4X03F5p4OdfnMcaBOoFtSFsLmBtjZgTSCpI65OdrCpTsuEtQYqY6A2poAVoDbK4K9pkIzaWVu0RtqDAGtN6R1aqHDoGC5c8SPFXZa7dGI9Q8nVw8mdG4iRtw46iQdAcAlcMBg4muDHeKt08lOjpabemOVboHN2bDzz3bmlDp45cwPMcBTLtlsQEbCgrgern7e45W7xCrwFYEJunmvS86emA7UhD5KjplRGVZd/n98bn6efas6Kc3RC3I1pW6i86dXmLbj8TsSg6L9/j9/dmrLqPnenPDk6/O6MRZ9/EU6OHr0n0zXVty9fPU+Pu5vMh18deLrGPqmZctWjTofk6RlCstyVV10Xn6ly4uuMuT2t5Pb7Tdnl2PQBb1FBKrRQjkGV8DHleV9D4vz5DAeQ5Qj5NVDPaV0zTlNT5WrYnU22okDR8uplxhBRcsuTNy48yMDFUZOhaT6YcMPTAp0GbiKo6aOy00ykVua/FwqlX849PN2djg70yfF1cvlrMNDbbUJB0JAHytptjQOAcAcg7eXy1NtzPflPR2Pxv2dR5tudUuZOdZduAlTW2xsQNttAMMhs0W6FPrgJTRaKYGIrnRl8jooj+pgyUSVgTtDCg2lj3cPcU5+mHVsGy5ayryWoj9wrN9uXz/AE/M8anb53aYUHZ6U+P0/Qg8m0hwe15/E9vL9KuN+vhzOyRfdcS6NuRLT4uFmn43Tbk6fRGZD1Zsq0eT6LLqjhK8RlR8NBDqJ5o7Y8EVrLDs9P59+z6MeX2+50jP0sWIpiuik2OXgcn0vhfOkGz8Qc06yY6qdL56+po4q9Nujyo+6mXi06+LioY0Gw24SoGAWCqrzMofF3RafdxsleJVOH6Up6YAV0B2hKTrAwNO2Xo2GyhzsnjpZWhu3l6/VNtut5IuviNsdQ7bQlWo4HQY6MQa22Nti/P0w6ORay8N22y2xoY4xxoHYxx0wYUAdBBUAwwPTLr7sDu8yOkNsKKtOIDN5b0nb1wriEE1ubp5+dorpEfQ8/0YeNk7IUlbDkrLowqcezErsPJ9nx/MR03lerOd/Yn1867eglodzkU08Xd/l+F7Eub0PU8/pmvM9lTZ4dXOc/L3cfjO8ax06dfTChagUorUhXSSdccodEhhU5uhpitc6dksuKXoryec3THkr6Hinb6Y+L6vvOwHakgw3J1bD5tfZ8r58DpRKWjXvasjdBIasc2mDNHDxe2OLxH7+fi5xRMpigwRb9VcnbQeknLfjwm2XzNZerqwI7wDNlpMIYjVnStZCdDy24+NGI8zUS2z9EbeqArtXhwPiNsNRiNodhTEGjhqJXB2wNtHVG+9Dz5ejy+SwxHASDpjjQZTRBxiG0yskYjRlKwGHQUoF9czbUAGjDajG3NzJWXRytNl9Mzo5mV9JxdOKsqwlHpcHo6FKJ2clo25OXq5+yMSeozrPZ/I9jy+Dl23hP6nk9Xd0Fx6T9nm+j1QqjbU8b2uTDye/wA+njevxdFPa5zK2GyV05odM+DitI+Va8d6HTge0GacrnKXeNOic+ueEWSuTzFNFqE0dDU516Jxyx7p8nDS0uT0Onwj3eq/j2PXPk7o9LgSfJN5t516Rr6JavM3W9LcrbdO52q2Q0xXDtNYssgVEtDqk4pHS5l5iPI1Httjh3gUsBcuWbAJyjPkotpVGR3juwMbq5+nqd1PoZSkcTK3jEg7Eg6hBFYjBKYbLhspMCI7wrewEsDj5/Tl53AeifCzJ0bbBwNHYVhtkQFjbPB6lb1TENplKUG2jbYXnpLhW6I33MubZgRswaYqMeN0Kyy6uyVvQadZbcd4X5Ofrh0jYjqadEo8HbzYebtvmsymvVHL3e4rqnR6XJ0x6qtO2nh8vs+P890+l4nodHRDs5vQKnZHnvOTkh28njtn5uqt0ctuymJ6pupyWyIdZnXqnzdhy5imwNDOrJG1FwmlFmY07mONO1Y4mvLCyOvSLz9HNxQYHzV6w23bTzz1ei3n06uwc76VM9VDPVTTEVEgUWa5lBEYpjZ8SVW22I2gxxkAyzDRiDQZKgKtW5KQ4UMNybEFOiFu8phuzIyYvIQfKYq22ZW1NttDgTYCGAEHKMio2L6LKfoTYJFBJcrJFeZ5qvGsFODlRRG0EAG2uLdt6Jtm2IyaDBsMNhkaUTApwtGG7wvl2zg0FKZJRNzqNPuy6WDew3PfkiHTz9PJHp5+nRlZdmVtUFlfm8gEfPbbQ/q+R2+h0uG9Z+ng9Dq5OnnrVfA+h83m8is98163R5Pp/RRNo6KwGZLm7ubi5LS3lvYjb0rU5Ovo06bYKzRPo5Xy7kFuxOboxwU6uTkpOdIWqpXVONqhuicDR2TypkLTfSfL0R4EYti5weg7awBjExUEy4jEDRhgEbQCCFlNNhtGyiqKmgg6NlMbbBUmm22hRufBF281OBCCtWrGvaUy7oKMmXKyny1iDsSNqNgdNgIOUZMu0obot1nPSidBZT0PkNZKbLml3pzcA7k5OQ9CxHUnigNUjS79U6ZesxzGxXQJtgTlCRgc7z402V7NQbs2DUQMaJHKsmGD+nG/pCqnqPn+h5fNayUiHVzdQMd0Fg1eV1c1fO8wMPGB2gVma9lFb6BumO6Onn6+LbsQ11fmpeh5/wAqHu4KHtzj1/Sc6VXMEanN4IdfP4h7fP6qLvDs7TG3chpMbn6Wjn6+I5ekqW7Oerwocnc+Hkt6HLzSCrhR4EvNCIKzzC0iZMMHebW1pF+0sA2rJOjRza08RBQExQZJto22gbaMVw2XDFNTgYOGCVAxUhZToWApIUnwDbc7jtWUiK0jXrKADqZSmXOynzVip2Yg6hK7QrhkNukTrqPYWbrUI9o4sJ02LLtGymiMRQ+iS32UGqBSEHQHLMWobCtIrhm2MAYKGWSuDzrOH7TDGtlwUy4ZcObdi9nesA/oErQl59hwdGYbR6ubqBiN0sDp587cfjkNt5gJFDER1+h5Hs+wjRv3dXPRupL8XZby+F9P8/45zEHwuj0fH6vW9Ob72o50xJcvocvByEjyXu3L2+pz9fOK7sG9CNWjFeXqeOHr5p83qtx9HcE6BpN5KWg7xwQ9c83hj2pc3lbvnzcY69lxHsc4T6A04nWWHWeanWWaJ2sJYwK4HAwquCeYYDYQSmLV5a7t3Xp9CJvujmj3tl5M/bnzeO3Zz8IhxCMtBSOZFtPnR18ltKc3uJ6Xi06+XiIXSOuCxxHnMVOjFTuEYGwutO3b6EyttgBLCg558j4thmQaW0tpUTJTS0UE9DpjCsWoMRocElM13OZxgr