Рисунок 2.1. Упрощенная схема субстратного окислительного метаболизма (по данным D. Hoshinoetal., 2016, переработано). Обозначения: Длинноцепочечная жирная кислота, LCFA; триацилглицерин, ТАГ; транслоказа жирных кислот/CD36, FAT/CD36; белок, связывающий жирные кислоты, FABPpm; транспортер глюкозы 4, GLUT4; монокарбоксилатные белки-транспортеры, MCT.
Рисунок 2.2. Митохондриальные адаптации: содержание, функция и динамика (по данным D. Hoshinoetal., 2016, переработано)
На рисунке 2.3 в общем виде представлен потенциальный механизм митохондриальной адаптации в скелетной мускулатуре. Высокоинтенсивные интервальные упражнения повышают концентрацию АДФ и АМФ, Са2+, АФК и лактата в скелетных мышцах. Внутриклеточные изменения окружающей среды, вызванные мышечными сокращениями, являются триггерами для активации сигнальной трансдукции, в том числе киназами, CaMK, AMPK и p38. Эти активации в киназах активируют белок PGC-1alpha и индуцируют его транслокацию в клеточные ядра. В ядре PGC-1alpha работает как котранскрипционный фактор, включая транскрипцию митохондриальных генов. Острых реакций недостаточно для увеличения содержания митохондриального белка, и для достижения долговременной митохондриальной адаптации цикл должен быть повторен.
Рисунок 2.3. Общее представление потенциального механизма митохондриальной адаптации в скелетной мускулатуре (по данным D. Hoshino et al. (2016), переработано). Обозначения: Активные формы кислорода, АФК; Ca2+/кальмодулин-зависимая протеинкиназа, CaMK; АМФ-активируемая киназа, АМФК; митоген-активируемая протеинкиназа р38, р38
В аналитическом материале M. Atakan et al (2021) представлена краткая история высокоинтенсивных