Искусственный интеллект в прикладных науках. Транспорт и логистика. Джейд Картер. Читать онлайн. Newlib. NEWLIB.NET

Автор: Джейд Картер
Издательство: Автор
Серия: Искусственный интеллект в прикладных науках
Жанр произведения:
Год издания: 2024
isbn:
Скачать книгу
позиционирования (GPS) представляют собой важный инструмент для определения местоположения транспортного средства на поверхности Земли. С помощью сети спутников, орбитирующих вокруг Земли, GPS-приемники на транспортном средстве могут определять свое положение с высокой точностью. Это позволяет транспортному средству не только определить текущий маршрут, но и управлять своим перемещением относительно целевой точки, обеспечивая навигацию в реальном времени.

      Однако в городских условиях или вблизи высоких зданий сигнал GPS может быть отражен и ослаблен, что снижает его точность. В таких ситуациях данные GPS могут быть недостаточно точными для обеспечения надежного позиционирования транспортного средства. Поэтому для повышения точности позиционирования GPS-данные часто комбинируются с данными других сенсоров, таких как инерциальные измерительные блоки (IMU), лидары, радары и камеры.

      Комбинирование данных GPS с данными других сенсоров позволяет улучшить точность позиционирования транспортного средства, особенно в условиях, где сигнал GPS может быть недоступен или ненадежен. Например, при движении в городской застройке или в условиях плохой видимости. Это обеспечивает надежную навигацию и позволяет транспортным средствам эффективно и безопасно перемещаться даже в сложных условиях окружающей среды.

      Таким образом, хотя GPS является важным инструментом для определения местоположения транспортного средства, его точность может быть ограничена в некоторых ситуациях. Комбинирование данных GPS с данными других сенсоров позволяет повысить точность позиционирования и обеспечить надежную навигацию для автономных транспортных средств в различных условиях эксплуатации.

      Все эти сенсоры взаимодействуют между собой, обеспечивая транспортному средству полную и точную картину его окружения. Эта информация затем используется для принятия решений о безопасном и эффективном перемещении в пространстве.

      2. Обработка данных.

      Полученная от сенсоров информация играет критическую роль в автономном управлении транспортными средствами. Однако для эффективного использования этой информации необходима ее обработка и анализ. Для этого применяются компьютерные системы и алгоритмы машинного обучения, способные оперативно обрабатывать большие объемы данных в реальном времени.

      Компьютерные системы, предназначенные для автономного управления транспортными средствами, являются основой для обработки информации, получаемой от различных сенсоров. Эти системы оборудованы специальными процессорами и аппаратным обеспечением, способными эффективно обрабатывать большие объемы данных в реальном времени. Они принимают на вход информацию от сенсоров, таких как радары, лидары, камеры, ультразвуковые сенсоры и GPS, и подвергают ее дальнейшему анализу.

      Алгоритмы машинного обучения используются в функционировании систем автономного управления транспортными средствами, позволяя