Искусственный интеллект. Машинное обучение. Джейд Картер. Читать онлайн. Newlib. NEWLIB.NET

Автор: Джейд Картер
Издательство: Автор
Серия:
Жанр произведения:
Год издания: 2024
isbn:
Скачать книгу
`show()`.

      На получившейся диаграмме мы видим точки, которые представляют пары значений переменных X и Y. По расположению точек можно сделать выводы о возможной корреляции между этими переменными: например, положительной (если точки идут вверх) или отрицательной (если точки идут вниз).

      Эти примеры демонстрируют основные возможности визуализации данных с использованием библиотеки `matplotlib` в Python.

      После визуализации данных статистический анализ играет ключевую роль в понимании распределения данных и выявлении основных характеристик. В этом процессе обычно вычисляются различные статистические метрики, такие как среднее значение, медиана, стандартное отклонение, квартили и корреляции между переменными.

      Среднее значение представляет собой сумму всех значений переменной, деленную на количество этих значений, и дает представление о центре распределения данных. Медиана, с другой стороны, является значением, которое разделяет распределение на две равные части, и является более устойчивой к выбросам, чем среднее значение. Стандартное отклонение измеряет разброс значений относительно среднего значения и позволяет оценить разброс данных вокруг среднего. Квартили представляют собой значения, которые делят упорядоченное распределение данных на четыре равные части и помогают понять вариабельность данных.

      Кроме того, анализ корреляции позволяет определить связь между переменными: положительная корреляция указывает на то, что значения двух переменных изменяются в одном направлении, отрицательная корреляция – на изменение в противоположных направлениях, а нулевая корреляция – на отсутствие связи между переменными. Эти статистические метрики помогают исследователям и аналитикам получить глубокое понимание данных, выявить аномалии и принять обоснованные решения на основе полученных результатов.

      Давайте рассмотрим пример статистического анализа данных с использованием Python и библиотеки Pandas. Предположим, у нас есть набор данных о росте и весе людей, и мы хотим провести предварительный анализ этих данных.

      ```python

      import pandas as pd

      # Создание DataFrame с данными

      data = {

      'Рост': [165, 170, 175, 180, 185],

      'Вес': [60, 65, 70, 75, 80]

      }

      df = pd.DataFrame(data)

      # Вывод основных статистических метрик

      print("Среднее значение роста:", df['Рост'].mean())

      print("Медиана роста:", df['Рост'].median())

      print("Стандартное отклонение роста:", df['Рост'].std())

      print("Первый квартиль роста:", df['Рост'].quantile(0.25))

      print("Третий квартиль роста:", df['Рост'].quantile(0.75))

      print()

      # Вывод корреляции между ростом и весом

      print("Корреляция между ростом и весом:", df['Рост'].corr(df['Вес']))

      ```

      В этом примере мы сначала создаем DataFrame с данными о росте и весе людей. Затем мы используем методы Pandas для вычисления различных статистических метрик, таких как среднее значение, медиана, стандартное отклонение и квартили для переменной "Рост". Мы также вычисляем корреляцию между ростом и весом, чтобы определить, есть ли связь между этими переменными.

      Этот пример демонстрирует, как можно использовать Python и библиотеку Pandas для проведения статистического анализа данных и получения основных характеристик набора данных.

      Среднее