В DP агент прогнозирует будущие награды, используя текущее состояние и действие, а также функцию перехода, которая определяет вероятности перехода из одного состояния в другое при выполнении определенного действия. Затем агент обновляет значения функций ценности для каждого состояния на основе полученных прогнозов, применяя операцию оптимальности Беллмана. Этот процесс повторяется до сходимости, что приводит к нахождению оптимальной стратегии принятия решений.
Одним из ключевых преимуществ динамического программирования является его эффективность при наличии модели среды, которая позволяет точно предсказывать будущие состояния и награды. Однако этот метод ограничен применением в средах с большим пространством состояний из-за высокой вычислительной сложности при хранении и обновлении значений функций ценности для каждого состояния.
Пример 1
Примером задачи, решаемой с использованием динамического программирования в обучении с подкреплением, может быть задача управления роботом на основе MDP. Представим себе робота, который находится в лабиринте и должен найти оптимальный путь к выходу, минимизируя количество шагов.
1. Определение MDP: В этой задаче состоянием MDP может быть каждая позиция в лабиринте, действиями – движения робота (например, вперед, назад, влево, вправо), наградой – отрицательное значение за каждый шаг и положительная награда за достижение выхода.
2. Функция перехода: Она определяет вероятности перехода из одного состояния в другое при выполнении определенного действия. Например, если робот движется вперед, то с вероятностью 0.8 он останется на месте, с вероятностью 0.1 перейдет в соседнюю клетку влево и с вероятностью 0.1 – вправо.
3. Функция ценности: Она определяет ожидаемую сумму награды, которую робот получит, находясь в определенном состоянии и действуя оптимальным образом в дальнейшем.
4. Принцип оптимальности Беллмана: Согласно принципу оптимальности, оптимальная функция ценности для каждого состояния равна максимальной сумме награды, которую робот может получить, начиная с этого состояния и действуя оптимальным образом.
5. Обновление функции ценности: Агент рекурсивно вычисляет оптимальные значения функции ценности для каждого состояния, применяя операцию оптимальности Беллмана, и использует их для выбора оптимальных действий.
Динамическое программирование позволяет роботу эффективно находить оптимальный путь к выходу, учитывая все возможные варианты действий и последствий.
Для решения этой задачи давайте реализуем простую симуляцию движения робота в лабиринте с использованием динамического программирования. Мы будем использовать простой лабиринт в виде сетки, где некоторые ячейки будут представлять препятствия, а одна ячейка будет выходом из лабиринта.
Давайте определим лабиринт, где:
– 0 обозначает свободную ячейку,
– 1 обозначает препятствие,
– 2 обозначает выход из