В процессе классификации нового объекта алгоритм ищет k ближайших объектов в обучающем наборе данных, используя заданную метрику расстояния (например, евклидово расстояние). Затем он присваивает этому объекту класс, который наиболее часто встречается среди соседей (например, с помощью голосования).
Одним из основных преимуществ метода k-NN является его простота и интуитивная понятность. Он не требует сложной предварительной обработки данных или параметров для обучения во время этапа обучения, что делает его привлекательным для быстрого прототипирования и начального анализа данных. Кроме того, k-NN хорошо работает на небольших наборах данных и может быть эффективным в задачах с небольшим числом классов.
Однако у метода k-NN есть и недостатки. Во-первых, он может быть вычислительно затратным, особенно при большом количестве объектов в обучающем наборе данных, поскольку требуется вычисление расстояний до всех объектов. Кроме того, к-NN чувствителен к выбросам и шуму в данных, так как классификация нового объекта зависит от близости к соседям, и наличие выбросов может привести к неправильной классификации.
В целом, метод k ближайших соседей остается полезным инструментом в арсенале алгоритмов машинного обучения, особенно в случае небольших наборов данных и когда требуется быстрое решение задачи классификации без сложной предварительной настройки. Однако необходимо учитывать его ограничения и применять его с осторожностью в случае больших объемов данных или данных с выбросами.
Пример 1
Задача:
Представим, что у нас есть набор данных о студентах, включающий их оценки за различные учебные предметы, а также информацию о других характеристиках, таких как время, проведенное за учебой, уровень учебной мотивации и т.д. Наша задача состоит в том, чтобы предсказать, будет ли студент успешно сдавать экзамен по математике (например, получит оценку выше 70 баллов) на основе этих данных.
Описание процесса решения:
1. Подготовка данных: Сначала мы загрузим данные и проанализируем их структуру. Мы можем выделить признаки, такие как оценки за другие предметы, время, проведенное за учебой, и использовать их в качестве признаков для обучения модели.
2. Разделение данных: Далее мы разделим наши данные на обучающий и тестовый наборы. Обучающий набор будет использоваться для обучения модели, а тестовый – для проверки ее качества на новых данных.
3. Обучение модели: Затем мы выберем алгоритм классификации для решения задачи. В данном случае мы можем использовать метод k ближайших соседей (k-NN) из-за его простоты и интуитивной понятности. Мы обучим модель на обучающем наборе данных, передавая ей оценки за другие предметы и другие характеристики в качестве признаков, а целевая переменная будет указывать на успешность сдачи экзамена по математике.
4. Оценка качества модели: После обучения модели мы оценим ее качество на тестовом наборе данных, вычислив метрики, такие как точность классификации, матрица ошибок и отчет о классификации.
Код решения:
```python
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
# 1. Подготовка данных
data = pd.read_csv("student_data.csv")
#