Базовая оценка минерализации. Ресурсный геолог. Андрей Вяльцев. Читать онлайн. Newlib. NEWLIB.NET

Автор: Андрей Вяльцев
Издательство: Издательские решения
Серия:
Жанр произведения:
Год издания: 0
isbn: 9785006232853
Скачать книгу
частот для того же распределения, что и выше по не сгруппированным данным, представлен на рисунке ниже.

      График накопленных частот по не сгруппированным данным

      Коэффициент асимметрии

      При построении гистограмм можно получить график как симметричный, в котором больших и малых значений «примерно поровну», так и асимметричный – с преобладанием высоких или низких значений. Для условий данных опробования цветных или драгоценных металлов асимметричный график встречается намного чаще симметричного. Логично, что нужна некая точная характеристика асимметрии, которая позволила бы избежать волюнтаризма в определении степени асимметричности выборки. Так давайте же сконструируем такую характеристику.

      Итак, у нас есть набор выборочных значений, основная масса которых группируется «слева» или «справа». Логично задать себе вопрос: слева или справа от чего? Видимо, от среднего арифметического. То есть, если мы попытаемся рассчитать разность (Xi – Xсреднее), то среднее подобных разностей должно бы нам показать направление и величину отклонений выборочных данных от среднего. Возможно, должно, но не будет: сумма подобных разностей всегда будет нулевой – по механизму расчета среднего. Казалось бы, можно возвести в квадрат – как это делалось для расчета дисперсии. Но проблема в том, что знак разности (Xi – Xсреднее) нужен (мы ж хотим понимать – значение ушло «влево» или «вправо» от среднего), а при возведении в квадрат знак «потеряется». Логично тогда использовать нечетную степень – она позволит избежать обнуления суммы разностей, с одной стороны, и «не потеряет знак» разностей – с другой. Первая нечетная степень – 3. То есть логично рассчитать среднее арифметическое кубов разностей. Также хотелось бы, чтобы конструируемая величина допускала сравнение асимметрии распределений разнородных данных, возможно, даже измеренных в разных единицах. То есть эта величина должна быть безразмерной – как сконструированный ранее коэффициент вариации. И кажется вполне логичным, что наше среднее должно быть нормировано на стандартное отклонение – т. е. показывать, во сколько раз асимметрия выборки больше, чем характеристика ее размаха. Ну, а учитывая то, что:

      – хочется получить безразмерную величину,

      – стандартное отклонение имеет те же единицы измерения, что и выборочные данные,

      – мы уже рассчитали среднее из кубов разностей,

      становится понятным, что необходимо выполнить возведение в куб также и величины стандартного отклонения. Итоговая величина будет рассчитываться по формуле:

      Полученная величина называется коэффициентом асимметрии или просто асимметрией. Коэффициент асимметрии показывает, куда и насколько сильно смещено среднее выборки относительно максимальной частоты распределения. В случае нулевого (или близкого к нулю) коэффициента асимметрии распределение симметрично и «высоких» значений примерно столько же, сколько «низких». В этом случае среднее и медиана выборки близки либо вообще