. . Читать онлайн. Newlib. NEWLIB.NET

Автор:
Издательство:
Серия:
Жанр произведения:
Год издания:
isbn:
Скачать книгу
подход к свободнорадикальной теории старения. Вклад Н. М. Эмануэля и его научной школы в геронтологию // Успехи геронтологии. 2021. Т. 34. № 5. С. 658–671. DOI: 10.34922/AE.2021.34.5.001.

      6

      Successful Aging / J.W. Rowe, R.L. Kahn // The Gerontologist. 1997. Vol. 37. Issue 4, August. P. 433–440. DOI:10.1093/geront/37.4.433.

/9j/4QAYRXhpZgAASUkqAAgAAAAAAAAAAAAAAP/sABFEdWNreQABAAQAAAA8AAD/7gAOQWRvYmUAZMAAAAAB/9sAhAAGBAQEBQQGBQUGCQYFBgkLCAYGCAsMCgoLCgoMEAwMDAwMDBAMDg8QDw4MExMUFBMTHBsbGxwfHx8fHx8fHx8fAQcHBw0MDRgQEBgaFREVGh8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx//wAARCAM3AlgDAREAAhEBAxEB/8QAmQAAAQUBAQEBAAAAAAAAAAAABAIDBQYHAQAICQEBAAAAAAAAAAAAAAAAAAAAABAAAgECBAQCBgUHBwkHAgILAQIDEQQAIRIFMUETBlEiYXGBMhQHkaGxQiPBUmJysiQV0YKSojNzCPDhwkNTYzQlFvGDk7NENRfSoyZUZHRFNjfD04SUVScRAQAAAAAAAAAAAAAAAAAAAAD/2gAMAwEAAhEDEQA/ANXmRW+HqK6nUN6iMAme1jVZXXLpioGAAu9rt5bcTzxqysAT4iuAqu9fLrtXd1PxFrG7HgxGY9oocBBW/wAu+5NhZpO1O4L3bOYgVxLCfXHLXAGxd/8Azd2c6N22uy7gt196WHVZ3FPVnGcAfa/OnsS4kSPf7G97fusvNdwM8QPomi1fZgLhtU3be86rnZN1t7/WCCsMqSHPxUHUPowHZtnvIbRodGttVcvD24BqWN0uLYMpBpQ1HowCI1FbvL/LPAeIrbW36w+3Aesl/wDxNen/APQIf/PkwA8Y/ch6G/JgCaUu0/V/JgGgP3eX9bAeP9tD+qMAkD8GT1jAKI/GhH6I+zAQ/cSA9vbop4GCStPDQcB873iA7jbRDNVtgx9QjIGAZtY9VlC/3VlZR689X8mAjduXVJLJ4odJ9AOAfAAV65URiT4UUnASW2RM6tdOPPPQgHiEA8g+jP24AzbFE7yXZFVkASEn/ZKeP89qn1UwCo0N3uZI/wCHsm9jTsP9BT9JwBe4PKqJBbml1dkxwtx0ACskh9CL9dMBr8fy97W3DbrGeW06N50ImF3bs0M2oxr5tS0qfWMAlu3e+ttz2juBdwhX3bTd4tZp4CeKj/VgEf8AWu87b5e4u3rm3jX3r6w/fIKDmVWkij1jATmzd49sbuwG27nBNLzhLdOYeuN9L/VgJaVQ3Dj4YBvXpFGBDeOAWpY8weeA9IkE0bQyqro4o8bgFSDyIOWArc/y77cFybzbOts18eFxYSmL11Q6kP0YCu73t/ednue0QXm4W26bdJfwqs7xGG6VhUrlGdD5jPADb7v0+2Xt+LvabkWeolb+1AuEaqCrOi/iJnl7uA3D5f0/6D7cK5qdttSD6DEpwFiRTWo5YAkcM8B2gwCWjDevANhSrZ4B4HL0YBOkg4BWA9zwHeeA7gOUwHDxwDLYBoscAhsAkHwwC46scAQkIFDXPngHDkMAyzK1CMAtFoaYB5eGA9gO4D2A9gONgEca4DyrU54BEwJywGW/PkLD2e81PO7GJvAgIzLX1H7cBEQK0draqzFmFvDViAPuDw8MA4QCcA28YOeAuriqWp/TT68Aq6H4Fx+ofswDF2tNpHoVPyYCDOAVG7CudaAkYBevVGS4BFQKesYAW62ba7pAs0CkSCoFOPs4YCrbn8oe17mUz28Pwl1xE8BMMgPjqjI+zANQ7V81dhUDZe5JruBOFruardx08NR/EGAkYPmz3jt5Efcfaq3iAea62mWreswTZ/Q2AlNt+anyy3KRoW3A7ReSeV7bcY3tWr+s1Y/62AtUW1rd2sUlhcR3MCnUssbLIpFfzkJGAGgsrqDuG7mkj0wvZRoj5ULLM5YewMMADCK7ep5kg/VgCtNLxBT7v5MAyB+7y/rYDxH4sP6owCQKW8nrGAUQOvD+qPswEN3FT/p3dCch0JK/0DgPnm48t0sxHme3BUf92dIwDMCaNqs4R7zysK+xixwAFlRWdB/szl4AEYBwJqV1I4xuD6tJwEpcAskdnHUPN5WYfdjX+0b6Mh6TgD7iQWlmBEgMzkRW0XIuclHqHE+jAG2dnHaWkcIb3QTJK2VSfM7t6zU4BG1Rdd5NyetJl0WqkZrbrmDTxkbzH0UwG/bS1dosgVz+Hi8w4/2a4AnUPDPAdWlfDARe8dpdtbuP+Y7dBO5z62kLID49RdL/AF4CH/6H3fbgD273DdWiD3bO9pe2/q89JFHqbAJ/jXfu2VG7bCm5wLxu9plBag+8beWjewNgCNu+YXad5OLZ7v4C852l+rWsv/3AFPsOAsytFIodSCCMmFKEesYDh00AApTAVjvKNJJdnRxVHv4gy8jkcjgIa9Pw3xUDOzRqGWGRjVhRckZjxPgefr4htHZEZj7K7fXw220qP+5XATiA8aUwDyVpgFjAe54DxGA8o5YDxywCRgFYD2A6MB7lgEsMA0wzIwDbKcA0cAhgOWA6hocAVDIoFDgFPIpX14BmmAfizwDo4YDuA9gPYD2AS+AaYkYBcZNKnAclI9uAyT/EXB8R2ZARNJEYbgyARkAPRKaXBBqM8BAX+47nZTp/y5rvb1hiCzWrB5lpGurVC2kmh/MJ9WAd27ets3EkWdwskif2kJqkqHwaNgHH0YA4enAXKn7taH9KL7RgHLsfgXP6h+zAM3qf8oPoRPyYCvjhgFrTzfqnAeA/Bb9YfYcA6R5rf1D9o4B+MD42avgfyYBuMfuZkObhqVPhgOz20TmJHQP1R94A0wETuPaWx7jHJFc2qSKMnVlDr9DA4Crv8p7Kzm+I2C9utmuBmHsZ3g+lQWQ4C09gnvBNy3Lbu4d2bdYoraCSylljjSVA8jq+p0A110DjgGbbuTehZQy7j23O0DorLcbbLHdjSRkWhbpSg+OkNgCrLu7ti7u1iTcUhvB5fg7wNazerpziNvowEo0EiwOukkOQysOGARQdWLxCgEYBCj93k/WGAUf+Ih/VH2YCD7my7Y3bKv4EuXL3DgMAvQH3eJB7sVqGI/SMRCjANWS67C2fl1JFT2atR+nARW3CvWk5shp+rXLAERDNq5eRs/ZgJXbVMrNdsKLNQQ/3Sny/0j5vowBVl++bg9y2cNrqhtxyL8JX9nuD24BzcCt3dRbYpPTl/EvCOIgU+7Xxkby+quAlL67gsbN53WoUALEozYt5URR4k5DAaDt+69+7VYwG42mLdrQRxmJ7NzHMI9IpqQ6gSF9WAkLT5k9szSdG+aXaroZGG+jMY9kg1J9JwFhtryzuohNbTJPEcxJEwdaeta4B+gJqM8B4nxOAV1FHA1yzGAF3HbNp3OExbhaQ3kJ+5NGsg/rA0wFbb5dbXbuZO39wvNil4hLaUyQV/Sgl1qfqwHHb5kbSo/BtO4oBxaJvgrqg56W1RMfVTAQ+4d62m5bvs22XNhe7XuZvY2FreQlNQVWJKyrqjYe3AO76hMV+aAjTJUHgRpwG29lLdDtTaY7gLSOytBDKpH4iG3QglR7pBJX00rzwE2BgFDAKGA7lXAeOA9ywHcAimeA7gPYDq8cB3AcOAbdDxGARSqkYAdwePhgGxRsueA8FIOAWhOAcRS1RgHAleApTAOItBgHF4YDuA9gPYD2A4wqMA3IAWAwHW8q0wAsjE1PLAZT8/bmNu2Ut1Op0lrIM6DUBpqfyYBqdAjhBkFRBT1KMABuGz7ZuGk3duskif2cwqsq/qyLR19hwAgsN+sTWxvFvYR/6W+9/1LcINX9NTgNLXOwtT6Yv2hgHbxfwLr9Q/YcAi/X/AJS459NfyYCuAZYDwXj6jgFKPwT+sPsOAdIzt/UP2jgH4x+/T+pvyYBtV/5e/wCv/JgHmH41r6h9mATGPNd/5eOA4f8Ahrb0sAfpwCtpjRe6dwAFP3C2p/8A5EuAg5ru5tNn2+d5Witbe1eb92JWVlRFZg9SVelDpywEbb9+dpb8i2V3e2N0X4WO8wfDS58h1Bor6lwDp7StLNOvtY3DYVIqJNrnNzaf+A3VQj1RDAOw3PeKkx2t9tncKrSsMytYXYHpMfUSvrjGARN3Z8GpTedm3HaQT55ljF5bZczJbdQgfrIMAbtvcuy7m6y7ff219oFCkMimQZc094e0YAbuNjL25ukEaM1zJBKIogKszFDRR6TgMD3KK4s78i4iaK5kg92RSp1mKlMx93AIhjA2qwhTgxkHp0hXqcBF2tAZEpQ9M0HgAaYDpUOkqkZNGyn2imAmLh3jgS3t/LcTnpQeC5Zv6kUVwEnEbTbtvq3ktrdMzxOlftZj9eA7s1nJGj3NyKXly3UmHHTXJIx6EXL11wHYVG4bm84zs9vLLEeIkuKUZ/VEDpH6RPhgN52okbXZEjL4eGn/AIa4BV5t9jfRlLuCOZTkRIof7cBW7r5cbGZjcbe0213JFOrZyNH/AFQaYBj+GfMfbAPgtwt94iX/AFd4vSlI/vFp9ZwD0Pft1Zt0u4djvNuYZGeNRcQn06l0tT6cBObd3L2/ubBLG+gmkP8AqtQWT+g2lvqwEjpK8BpJ5EYBNGJGoVpgOVZWyrTwwEF3Oha42hqeUXyew6HwFZ3yKe6XcFlGi2QSAIOMlAc2p930YDaLXuC12ns/ZNZHWbb7TSpqaVgWmQzYnko44ACHuHd5H6riWNa5KxUGn6q1A+nAWPaN5F1+FJTq8uWr/PgJYEHAKwHjgPYDuA5gOHAewHhgFYDhwCWNMA02k5g0wDUnvEfXgGmiqarxwCgMsAtkVQCKivHAOIygZccApWateWAdGA7wwHcB7AewHsB7AJ0gvgEyKSppgBDxIwGUf4gWdNgsU01R5yG9BJSmA5dn94ceFB9QwDVcsB4HAd2/55drTqI9822/2ZqjU1xbtJECDWvUh1U+jAW7be5O0d/hf+E7vbXXVFCIpUZhXL3CQ2Ak7uylkspIYyGdlooOVaevAVqfb723r1YHUD71Kj6RUYAcc/VgFAfhH9YZew4B0j/h/UP2jgCYx+/T/qt+TANKv/L3/X/kwDrj8a09IH2YBKDO79v5cAhqi2tf1x9uAc20H/qm/PL4C3/8+bAV/ewB2zb+H8On+uNcBA3Xb21XcixT26mNk8yUBBy8DUYCJi7ONirz7Jf3O1OrUpaSvGp9cfmiP9HAOS3/AH7alUuvgt9iADKt3D05aeiWGor/ADMAXZfMO2t6DcLLc9pYe88DDcLap8VOqQD1KMA7LP2X3K1WO075NTx+DvQfQH84P84YBmbZ1sK/Abxuuz0pSC9UX9r6gz9Ugf8AeDADS3ncjRMlzZbf3Baiut7KXoyU9MM+uOv/AHmArl9/0USFvrS52GVQwUXETwxjXWtJF6kHPxwEMewUKy3W1blHexSJpX3SAOI88ZYfVgIG4229s5mS5j0kqwBBDKfaMAXtatdTtfNnHnDbH/dqfO4/Xb6gMAWa3m4CECttZsryjk09KxofERg6z6aYAnc7qeOKO1tDS9uyY4G/MAzklPojXP10wEja2kVnYpa24ISNNCV4nxJ8STmcBsWy3lrdbTatbTpNGsEYYxsHAIQAglSaYA4Dy1r7cB0BtORr6cAjWwNDgHTIGUqwyPEcR9GAhdx7P7Y3JtVzYxdTlLGOm4P82mAjX7O36w/9h3+eFB7tpefvEWXLzVp9GAT/AB7vrast22RNwhH/AKnbn83/AIbavtGAKsPmH2vdMIp7htvuDl0L5DAan9I1T+tgE9ztLM+0yWMiENdgxy5SRN+G5oSK5HxGYwELuM4ls7yQqYyyy6o24qQCCpp4HAXDtYz3mzbTuF3nL8FbrbIfuJ0VBan5z09goPHATdM8B03osnhlrTVKkYp4saD68Bd7O4WaBJVy1jURyB5jAEg4DuA5gOjAeOA9gOYDwwChgPHAIdajADnI4BxEJXOhGA50BWoPswHukK4BYUcDngGjEQ2XDAOqKZYBwYDuA9gPHAewHsB7AeA54DxGAYeEatWAyb/EJIv8H21KAlpwCCK8ZIxgBZ6CZ6LoANAvgBkBgEVwHRgJ2XYrK4t1meBSjitRkRXLAVzdflV2zeSF3tFjn4CULpcH0Oulh9OAjR2Z3vs3m7c7kvIFX3La5f4uCnhomqwHqbAPwfMP5u7KwTdtjtN6gB801m7W0pH6klUwB0Pzt7InOjuHar3ZZuDtd2zGMH++h1YCx7bufY2+xg7JvVvPqoQiSo5/oEq+AOn2G8XpmNkkVAOeknOvA/y4BsW1xHeTNJEyqQ1GIND7cAOhH8Pf9f8AkwDris1p6hT6MBxF/wCM9v5cA3IP3e0/WH24Bzbaf9Ubh6LG2/8APmwFe30f/hiDw/h03/lrgBtFLpB4L+TANBf3d/1sBxgOunoUfZgA7i3hkt3LKGOoUqMBD7j2rs98yJcWyOSoILKGINK8WBIwEBcbdu+zW8lxs26XVqIq0tzIZovV05tY+gjAR7d975FIBu+0Wl+60PxNuWtbjMcajUPrGAMt/mJs7r0pbq6sNWRi3CIXEWf+9SrUHpbAIl23YNxrd2ttbTScTebRP0Za/qqYz9LHAVPuCC4jlMC39xKjAgx3ajqqDx0yUUmntwBTXHwdoqRRguNMVvEOBY5KvqHE+jAHWEUVpaaC+ShpJZWy1MfM8h9ZzwHNjSS6lk3aUFTOAlqrcUt1NVNPGQ+c+zAPbvdTSFNttmKXE6l5ZV4xW6e+/rb3V9PqwGp//HnbFza29zBDJtt20UbfE2EjW76ioNfL5T9GAR/A/mBtv/tm+w7pAOFtusWmSnh8RDQ/SMBxu9N/24gb721dxIB5ruwK3kOXOi0dR68BJbT3x2vujhLXcYhMcuhMejLXw0SaG+jAT1CQGPrBGAVJVlqKauVBQYBpZKGjGh9OAV1HJyFeWWAHvdv22/Tp3trFcLzEqqx9h44Ci7h2Nsu1dy7Rf7Y09oJLlkltEcmFqxOdWk8wRgEbxIYk3Bz7jLMH8AQGo35DgNC2BNGw7WnNbO2H0QrgJAE8MBFb1drFc2ils4XE8iAgHSrAZgjh5s8Bee3rr8GWNjXSQ6D0HL8mAm1IDUHDgPWM/swCwRxwHjgPA4DpzGASCcB3AewHRgOg4DhwDEq51wHoSQCSfKMBV+5O8bi3s7gbWimeIyK1xKPw06SgsQtauatpHtwEB238ydwmkC7lcWqJUV6wZJGXOrLoXSOHPAaPazx3EKTRkFHFfKwYV8KjLAPUwHqYDowHTgPYD2A9gOVwHcB7AewHDwwGL/PxhKdnijcMBcpHIAeDGaMFT6aHAeuz+9S/rn7cA1gOgnAXGA12iM+Cj6mwBdx/Zz/qnAcvooltZZAgDqtQR44CEFzUUdQRgGJrLa7pSssCkEZ5fyYCtbr8qOytyJf4KOKYmoliHTevjqj0NgI+LsHvTZm1dud131vGvC2ncXUVPDTNw+nAGR94/OPZ6rfbfYb3CPvxl7SY0/px1wBcPzq2LRp7k2DcNpBNHlaH4iGv95Bn9WAse093/LzfXiO175bPInuw9VVf1FJdL4Ca/g8oWdopEkEwqgPl8efDngBLjb7uOC1V4mGhhqIGoDPxFcA3Y0HdG4f/AKjbZf8AfzYCA3qN37dsIVBrcWTRB6HQrPGtNbAUUevACAl5hMBWPTTUpDj6VrgGRpMElDUhhUc8B4r+NH+qK/RgByv7u5/SwCJgTcR0/NH2YCC3tP8Alc30+3AUi5jBun8An5MAK1pC8CFkBBDUOAgX2a2dmlUGKUCqyR+RvpWmARE24KZo57mS4VOno6hLEAsQQCc88sBJWsrTXZuHH4cIaOEctXCR/wDRHtwBF1KL+aPbhlDQS3zD/ZV8sdf94R/RrgJlr2G1tZLiU0hiGtgPAcFA8TwAwDe228yw3F3dgC+vQXnXiI1APThHojHH01wG8bexSxtl0hh0YxT+YMA4HpkR7DgPBxXw9uAB3Tt7YN2jK7jYQXYbi0iDX/TFG+vAQafLyOxOrt/eb/aKVItxJ8Rb+rpTagB6jgFib5j7b/bW1lv0C/ft2a0uD/MfVGTgFD5g7RC4i3m1u9lmJofjIGMdfRNHrU4Cdsb/AGy+j6m33UV1HxLQOsgHr0k0wBRiVx+kOeArfcYVd22UE0JumoDz/BkywFJ7h7n2Do7pbG9jiu4jcRGGWqMXXUpChgNWfMYDWrC03Lb9m2+K7j6908MEdpHAQ8lwDEvTovlox4GtBkTwwEidn7gijaeQWtxoBMllbNI066QGbSxASRlDA0FK8sABNt8V64ueqTHJEsekAFSurXUVFQWGWAsWxTaLwA8HBFPTTLAT8syoEbVkpQsT4V0n6jgCh95PA/bngPK1QD4j6xgFCmA6MBwjPAewHuWA8MB3AdwDM8qxpmKliAo8STQYBlkmKMfu5ELwJI5D0HAV+67euLqa7ieMJa3KqYyCKhgxJDDwpT14Cp929m/B7a1xHCHkDkKQSGIdyat6B4YCR+Vl/Kk17tcwVDBUqqrSpDUYk6iTnzp/JgNGGA9gPDAdwHsB7AewHiMB4DAcLUwHtQwCdYwGIfPiF5O5+2nineJHmiWe3AUpKeuoDGuYIA4jAAbhvW42d/c/G7XK1oJX6d3ZkXA0avKZIhplU046Q2Af2/eNq3LUbG6jnZffjU0kX9aM0dfaMAZXAXC0z2ZD4KfqY4Au5P4c/wCrgF7h/wADP6EOArGoYBaH3vUcB0N5cA91GBizyIFf6RwBCkNcSx/dUEj2YAeSzsriAySwqRXScs/qwEDu3y47T3Mg3VjE0hzRmRS1D4HJvrwEMnyz3Payzdt9wbhtZ4pFHcNJDX0xTa1p7cAQu+fOvZgNb7fv8K8RPE1pMR+vCWT6RgLP2Z3puHcj7jBuOyNs+42EcRYtJHMkqSl9Oh1ANFZDxwEbsnevY98kcGyd0xwSqugbfesFKkZadFwEky9D4CZurCaZBJLt8F2wBrdW79Fm8NBFae2TARk+3WtWEr3FoKV/eYxNGP8AvFr9b4Bk7HdP+LayQ3aj3OhLQ09KyVX+vgI25juLWN4p42i83vSKyD2N5kP04Bl5I2dXNQmmhb3lBp4rUYCG3ldW1z6SGIrQVHhgKRdLSZhzKfkwDRX8CJR+a30YCLGWsej8uAjrgMfiAraGZY6OOIJcivswEjM9vY2eoKelEoWNBxamSqPSTgCdrsTDblpjqupW6lwRw1EUCj0KPKMAta3u5dPjZ2Dgv4SXIFQPSIga/rerAH39/Da