Деятельность головного мозга человека в качестве базовой модели представляет собой сильный аргумент в пользу осуществимости создания и дальнейшего развития искусственного интеллекта. Однако ни один даже самый мощный довод не приблизит нас к пониманию будущих сроков, поскольку трудно предсказать, когда произойдет то или иное открытие в нейробиологии. Можно сказать только одно: чем глубже в будущее мы заглядываем, тем больше вероятность, что секреты функционирования мозга будут раскрыты достаточно полно для воплощения систем искусственного интеллекта.
Исследователи, работающие в области искусственного интеллекта, придерживаются разных точек зрения относительно того, насколько многообещающим является нейроморфный подход сравнительно с технологиями, основанными на полностью композиционных подходах. Полет птиц демонстрировал физическую возможность появления летающих механизмов тяжелее воздуха, что в итоге привело к строительству летательных аппаратов. Однако даже первые поднявшиеся в воздух аэропланы не взмахивали крыльями. По какому пути пойдет разработка искусственного интеллекта? Вопрос остается открытым: по принципу ли закона аэродинамики, удерживающего в воздухе тяжелые железные механизмы, – то есть учась у живой природы, но не подражая ей напрямую; по принципу ли устройства двигателя внутреннего сгорания – то есть непосредственно копируя действия природных сил.
Концепция Тьюринга о разработке программы, получающей большую часть знаний за счет обучения, а не в результате задания исходных данных, применима и к созданию искусственного интеллекта – как к нейроморфному, так и композиционному подходам.
Вариацией тьюринговой концепции «машины-ребенка» стала идея зародыша ИИ{105}. Однако если «машине-ребенку», как это представлял Тьюринг, полагалось иметь относительно фиксированную архитектуру и развивать свой потенциал за счет накопления контента, зародыш ИИ будет более сложной системой, самосовершенствующей собственную архитектуру. На ранних стадиях существования