Код да Винчи. Теория Информации. Фима. Читать онлайн. Newlib. NEWLIB.NET

Автор: Фима
Издательство: Автор
Серия:
Жанр произведения:
Год издания: 2023
isbn:
Скачать книгу
было бы логично предположить, что свободные кванты находятся в постоянном движении. Такая динамичная информационная среда позволяла бы квантовой спирали развиваться и находить уникальную, редкую и подходящую информацию, возможно даже издалека. Квантовое пространство может также напоминать водный мир с различными внутренними течениями и волнами.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «Литрес».

      Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEAYABgAAD/4gHbSUNDX1BST0ZJTEUAAQEAAAHLAAAAAAJAAABtbnRyUkdCIFhZWiAAAAAAAAAAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLVF0BQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlyWFlaAAAA8AAAABRnWFlaAAABBAAAABRiWFlaAAABGAAAABR3dHB0AAABLAAAABRjcHJ0AAABQAAAAAxyVFJDAAABTAAAACBnVFJDAAABTAAAACBiVFJDAAABTAAAACBkZXNjAAABbAAAAF9YWVogAAAAAAAAb58AADj0AAADkVhZWiAAAAAAAABilgAAt4cAABjcWFlaIAAAAAAAACShAAAPhQAAttNYWVogAAAAAAAA808AAQAAAAEWwnRleHQAAAAATi9BAHBhcmEAAAAAAAMAAAACZmYAAPKnAAANWQAAE9AAAApbZGVzYwAAAAAAAAAFc1JHQgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/2wBDAAoHBwgHBgoICAgLCgoLDhgQDg0NDh0VFhEYIx8lJCIfIiEmKzcvJik0KSEiMEExNDk7Pj4+JS5ESUM8SDc9Pjv/2wBDAQoLCw4NDhwQEBw7KCIoOzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozv/wAARCAEgAM4DASIAAhEBAxEB/8QAGwAAAgMBAQEAAAAAAAAAAAAAAwQBAgUGAAf/xAA/EAABBAEDAgQDBAgFAgcAAAABAAIDEQQSITEFQSJRYXEGEzIUI4GRM0JDUlNykqEVNGKxwWOCBxZEk6Lh8P/EABkBAAMBAQEAAAAAAAAAAAAAAAECAwQABf/EACgRAAICAgECBwADAQEAAAAAAAABAhEDITESQQQTIjIzQlEUI2FDcf/aAAwDAQACEQMRAD8A+QfKINa2e9qflf8AUafxVHNuQgeZUAN/e/suGC/Kv9oz81PyD/Ej/qQqZf6T+y9pYf2n9kNnBvspq/mR/wBS99mv9rH+aDpZ+/8A2XtLP3z/AErt/p2hg4oA/TxfmvDGaf28Y/FADY/4h/pU6Yv4h/oQ3+h0HOIBzkRfmpGI07/aYkuWx1s9xP8AKq0L7/kup/p1oc+xx1vlRf3UjEjO/wBrhr8UoGs/ed/Sp0M83/0oU/0Nr8HDjMB/zcBHnuvDBY/ZuVAT70kiG/6j+C9pb/q/JCn+gtDrunaXaXZMIPq5VHT/ACyYP6kpoZ5v/pXtMf77v6Uaf6doc/w538aD8Xqp6dIf20H9YS2mP+K7+j/7XgyI/tiP+xd6v07Qz/h038SL/wBwKP8AD5qPji2/6gS5ZH2m/wDiVGhn8X+xXer9O0MfYJqu4z7PCqcGcHhv9QQHNa0bStP5qt/6kfV+g0MnCnaD4R/UFU40zTu0beqBqr9ZeLj+8fzRpnaDfZpiDUZQ3NLXU4bqA51bOP5q79g2+4XKzjxBE59zwgJl207j2s8pcIoDPUpC8pCJx4BSApAUgbLjiKXhwprdSGoHEUV6rV9KnTsuOKAKwCnSrNagcVANqQDaKG7qS3dccBokr2hXA3Vi3cd1xwHR5qCwXSOW7bBDLVxwMgDsqHZEIVCEUcUIVaVyFCJxWl5eK8uOLgfdD3KJNxH/ACqjRcf4okv0x/ypO4ex54qdw43KXTOR/mH+6WTR4OZKsFUKQiAuPZWAtVCuNwgcepSAvduKVmi6XAJAtXDF4CwrjTwgcUrZSGo0eO6TjYJpmE1ot259UrkkMotiIFFePPK0hjM03oFqXYjdF6aKHWhuhmWG0V477J1+HtqYaPkUs5uk07akyaYjTRSyNuQVV4ViLNKBud0QAXDlDcEdw2QnN2RCCKqQiEKhCJxUqCpKgrjgrBcI9yrzm2RV+6qx7wV6q0/0xWK8KTuN2Jn/AE7/AHSyal3nelQjDgDJVgNlVWBTALtRAENquDYSgJA4V2iyq8FEbuLXHE88fkm8XG1us7oMMZkePJaYqFmx2490kpVpDwV7CFjGNpo/ELS6Z8OdT6u64IC2M8yP2FJ/4S6K3qWV9oyGaoG/S08Er6riQxY8LWMYGgCqAWZy3RpUdWcM7/w7Aww37Q4Sgc1ta5jqfw91DpodqaJGg8tG6+xzSt0eqweqlj4jTQSk6miiimfIiSHtDm0fVByYBKNTeV03V8Bhkc7T4h5BYRG5a4cGleMr2iEo1pmK7wkg8qLBOyZzISwlw7cpNrt1dO0Z2qLOBAurtBcUVzjfmhPFIgBuKGUQqpCIQdLx4UnlQUxweEXEfdTlbti/kXsf9Efdeyfpi9lL7Ddi0v6Z6U7puQXK5Kd00eAMkKwVQrBMAsFcKgRBygAsOURp2QxyjRt1ODfMrjh/EYWxaj3TELDkZMcfZ5AVB4WaB5Uj9MIblse8/Ss8nyy8Vwj6r8N4TMfAjbHQruukDwGr5qz4oycWIDHIIHmnun/Gb8l3yslgYTwQVlVrdGuk9HZyODw7sFi9TNO0MNkokueI8I5B3aBa43K+J58jIc+EBjRsLFlKrfA2lyN9SYdBtu4XI5dMydtgTuteXrMsoPzX6iVj5bxI8O9Voxp9yGRp8Cs7S9rgd/VZL2aXEdwtl+292CFmZFa781oiZpgDwqOIO3FK5NobgatOTBkKpVzwVTuiEoVBViqlE4axR91+JVMn9QeQRMTeE+/Pkh5P1M/lUl7huwV+8zvNJn6inX7Sn2SPcpoHSJCsFUKwTilwaKIAEMcooCACwFFM4rbl390sNymsUHWUr4CuR1rxrsBEgY+U2yyBzSE0U1zvJb/wlDFPlmOUW0ilnk6TZograQARZb4Pu9DG+Q7pjH6ZPI4Frw4ij4V18nwrjPPgJF+RT0XSMbpsGlo8RWV5DasX6L9Qa6P4N1EVJpolcJBhTSRmRrNXovoHWnX8MuZxvVBYnS8WObFMXB80qn0oZ4+p0cnMMoA/Na0DgDSlnxENt2wK7LK+G9PiMl+657q0LYTob2WnHkT0jNkxOO2Z5DfsrydqqlkZIorSldUAHd5tZ+SCWhaImWYtYryQ3OsohCE4d1QkVIq0Ot0TkbKh2CIShUFSVBCJw5hi8d49UGffQfRGwv8ALvPqg5I2j27KK97GfAZ36V3sku5TvLz7BJHkp4AkeVgqhXAspwF2jdFCo0UiRi3eiUBZoT+M3wjzJtIALThFQh3kEs+Bo8kNcSHN7FbHw/M6GbUDwskN2J8ytTo/h27lQnuLNENSR9L6Vm/OjYSdl7qmU5o1itLeSsXp2T8poaD6rTkmxcvEdiSUTINwvPetHpp2guc+Kf4dedYJItcv0TPDMlzO3KX6ji5uCx2PjzOEPkTaU6ewYT/mai5x5JVVBdPJFzaktHV9Q6hcPO64bquSZJaK2crP1xdrXOZZ1PJ5Krgx07ZPxGS1SBvdqDfTZKTs1DyTUdu4NKs0diweQtXDMTVoyiaQ39/JGmFO90AnYhVJFHbKhV3KlrjipVSrEqpTHDuF/ln+6Fljwxfyo+C28V5rug5n7P2UF72P2LgeIH07pI/UfdPg2WjtQSJHiPuqQFZ4IjRuFVo3V2+SZgChu6kCvxXmHb1UkGrQAEibqkAWoW1A2th/us6EAWfwWlGdUYB8lOZSBVzwxpaR+KawJflPHiopSQc6uArwt0jWkq0OnTOmgyjYN/inGY1POS7Ke2+A1c/jZLhXkui6dNBIWtlNgrHkjRtxysTzsuN5+SMmX8RaTdDqaPvHexXQ50PTWZLWsA33sLO6m2GLxR1VLoNcDTT22YcvgNWaSWQ4bBvKbyneMeVLNlcQ9bIIxTYTGp0lcKJifmDyQY3ObJqHsiuLnCz7Jmti3oQyaLuKSp53TeTyD2KVNEqiIsGSCqEUrmgVQ8pjipVSrFVKJxo9Ns40o7eSWzBuyj2KZ6YPuJf9krlfU0eihH3sf6h2iy32CScKkd7p+IWB7BIvFSu908HtgZIFlaWB0w5uO97C4yXUbR+sVnsaXua1rSXHYALs8WfG+HukAvZqyyNgeyXLJpUuRscU3vg5afGlxMh0E7NMjDRaeyqRYRJ55MvJfPK63vNkqpF7BOuNk3V6C47S5prdaDTpi25FIOHB90XEUExG27FWKU5OykUUy9og5v639lGM81XK9kutob37qMZvjpBcB7mhjtICdZK6L6XHbgqmPDbQO6JMym8KLaemWVrgFNlSPfqJJrZDkme/S1xNK5ibo3QtLa8yuVILbZSY6nN8kjK2nByfe3i97Ss7QSAFeJGQGGJr36XOoHum5YwyIROIJPcJVh8W3ZGnYItL2v1A/qnkIvk5PRm5LCRt2SZu1oSAkF3mk5mEN1hMmSaFzyVQqx7qqcBUqp4VioPCJxodMH3Lz7j+yDmMLPlmqsI/Tf0Dh5u/4S+Yb0c7A8rPH5B/qMQgBgruAkHip3+60MYXHfoFnv8A0z/cpocs6XB0Xw9iQ48Lup5NHTtE0+aT6rlvzJHSv3s/knGDT0yJpO2i6Wa8B0DqU1uVsd6jQFu/CvENUgB7p7AZA7CeCwGQmrPYIPyfkud5jhV6rtE+nhjsR0wF36uqvyTEUT3xmXZoArdLRuc3FFDYnV7FGwmvmbI40Wt5LjsFN8FUByGACwb9VOLQeOyLkxADkG+44Ruk432icCrXXoFbNXEjJaCmXQWFo43TbDRVUEWbCLWE0sUp7NcY6OflhNEJUxaTsLW1LCA6iCk3wkuNNpPGYHEzHi0pOyxt2WlkQEOvhKSQksvdaYSRnlEzwdNnuFMjZHRtdu5t0R5FG0FkmoCwe3mhv2jJYSHXuD5J7EoA4Uw2K3Ss1fIr1TczXmFsjhTCaHqUs9h459kULIQJoql7p0Yxl2Da9SqTdOnh5APfYqqJ2hQqp4V3AtNEV7qhRCaXTNsd5/1BL5hstv1THTBeM/8AmS+X+r+Kzx+Rjv2jOKLYK5sJNzS/KcwbkuoAJ3CFxj3Ca+HsYTdecSwPEdmjwh1dNsbpukdFg9BbkY0Tsl5jhjaNVclNzYHTc6NuLhxsjYwUBW9+ackwJMkN+05Yx4fJqy8zExoZQ/pM0kkzN3Oc7Z3osibfc1JJGBL06fpnUXY7+Hbsd2KjLgewBzgtqfPhz8dn2iI/ND69QU38QdKZiQNjbvbb3KspvVk3jVOjmmX8ggdkbCZI+E0PC5yAxzo43Ctj5p+APZjR8NDjt5qr4JrkhsWpr2kcHgnhdP8ACfSmP+9Lb8isLFxny5TgPGXdhuvpnQOlnC6bEJNnkWVGb1RWC3ZZuCADTaKDPhhrD6raLNilslvhWOaaNUGctLhanHzRY+jhwstJWvDAzVuLJWpDjsLAjC2dLRx03Qxvbd1lZvShAwjT7L6O/FjLTYshY3U8OMsO3ZWtolSZ82ysZzDQG/IKz89jmkOc5rjXLV1XU8anEbaVy2dGwAmMkgbEO5WiErITVC00crseKSRumOjovuhGJzWB0g0+QTE7nThlNIaxm73cfghSStkgDpAS661X29lSLaZKSVAxs/SiayWlrtyBbVRwoMeO4XiLGvgg7rWYxbJYx44Hus57dJpaM4LZC3sElOLckZRDvTTWK7+ZAzW05oG3KL07/LOsX40LOdbwfUrPH5C/1D4AuMedhH6flvwurTBuxeaQMAEsb23CDLZ6hI8bEOS1cmmNdJM6fO+1zt1Nklea4HAWdhZs+BlgvJoncLa6LMybHp0hI/dJS3UsNpJe2rJ7KSdella+yAZGUH5msMoP7DzWr1PqBysWPUbcGgErFiY55Aefp4RCHPcWA7AbpulOjup7Enkg8FP44IxmE05x2AvcBJlhL9PCexDoEbC4kA3SpLSJxVna/CvSRJM2eRp2pd4GENFj2pcJgfFkPT8YMhxHudXLnAAqzvjzqL2/d40DB2skrJ1d2ael9jtXNOpAmHZcJJ8adYfxJEw+jEuPivrMkZk+0NP/AGJWuoZaO3ZQlWjjP8Okr5k74i6oSNWTTvMNC8PinqrNhmOH4BBRaC3Z9RlcG2FlZz6jPeyuId8U9ZbEH/ag5w5BCGPiPqmRu+SN21/TSLTaAtD/AFI6nkLnuo43yonO2GvlMz9TmleNTRfdKZGU+dhD47B4I7KkNCS2IdRfI90LXtDGMaAIwOB6rOcafpbu0nhPZsj5pRI6rrslY49TnO58lqxq6MuV0mWkjAxoydjZKHFtrDh4aTWa3S2OO92Nspa6ice9bLY1RiTsUnNyX6JKU2nZwWmncgBJyJGViN9O/wAs8f6ggZ3I37lH6aNULxV+IIGfyKHcrNH5C/1Gunfo283Y2VHsBy5CfCAdyVfpouMHyr/dGhbr6gG0DT6F7j3QT9bC/ah3GwczHxxlRtf8qwSCNwDwfRM/aNTPGSSt3p7/ALP0eQTPD/th+ZZ7DgD8AuXzXBstMN0aSN9TKRuMUeE33pHCcxoJJInysAO/c9u6zmtF2Vs9MyIXQtjvS/cbjZFquDk7eykmMyUgkFpcNioZG+Ilrm0RsCE5LC0lp1eGtzzarDMQWnTZBIsjsl6k6UhmmtoE4yFrS5pBBrYKjnujHBNdlrvLJJIQ5oGo3frwszqIEbnNbvRu1oXhoVfJnfiJ2AaXTEkAgEeaswCMAHUde9IME7RkAA7Fu4/BGY4F9C6AsJMmKMY6QcWWUpUySXtfRFjz8kGY6JQxza90zqiYPmPcdgfDdWk8khzw9pJB33WdI0t0FEr9T2BoIBoWeUSMy6m/d1YGwVMZzHBza8VghPxadQ2sho2W6GCDjbRjlmmpUmIOybcbG4NcIbntI5072jTNa2J5rSdWyFoL2Cm7HzSzwwiNHLOTFJvFZB28/NExYmgFztmtFleyGeJrKruV55EcOgCi9PhjSsjnluhaV4fIXHuhv+loHf8A2RHMLTuEMmi89gKVmRiKzu1OLj3Skg5TEjrQJ