: B11 ( A B -> {|A|+|B|} {|A|-|B|} {|A|*|B|} {|A|/|B|} )
SWAP ABS SWAP ABS \ A B ->|A| |B|
2DUP + \ |A| |B|-> |A| |B| (|A|+|B|)
ROT ROT 2DUP – \ |A| |B| (|A|+|B|) -> (|A|+|B|) |A| |B| (|A|-|B|)
ROT ROT 2DUP * \ (+) |A| |B| (-) -> (+) (-) |A| |B| (|A|*|B|)
ROT ROT / \ (+) (-) |A| |B| (*)-> (+) (-) (*) (|A|/|B|)
;
В случае для вещественных аргументов:
: B11 ( A B -> {|A|+|B|} {|A|-|B|} {|A|*|B|} {|A|/|B|} )
FSWAP FABS \ A B -> B |A|
FSWAP FABS \ B |A| -> |A| |B|
FOVER FOVER F+ \ |A| |B|-> |A| |B| (|A|+|B|)
FROT FROT FOVER FOVER F- \ |A| |B| (|A|+|B|) -> (|A|+|B|) |A| |B| (|A|-|B|)
FROT FROT FOVER FOVER F* \ (+) |A| |B| (-) -> (+) (-) |A| |B| (|A|*|B|)
FROT FROT F/ \ (+) (-) |A| |B| (*)-> (+) (-) (*) (|A|/|B|)
;
В комментариях (скобках) соответствующие сумма, разность, произведение и частное взяты в фигурные скобки для визуального выделения элементов на стеке. Обычные скобки в данном случае применять нельзя, так как они обозначают комментарий и являются зарезервированными словами Форта и системы программирования SP-Forth в частности.
Тест на корректность работы написанных слов произведите самостоятельно.
Пример 12. Вычислить гипотенузу и периметр прямоугольного треугольника по его катетам. Так как мы имеем дело с квадратным корнем, сразу приведем код для случая вещественного аргумента.
: B12 ( A B -> C P ) \ C=Квадратный_Корень(A^2+B^2) P=A+B+C
FOVER FDUP F* \ A B -> A B A^2
FOVER FDUP F* \ A B A^2 -> A B A^2 B^2
F+ FSQRT \ A B A^2 B^2 -> A B Квадратный_Корень(A^2+B^2)=C
FROT FROT F+ \ A B C -> C A+B
FOVER F+ \ C A+B -> C A+B+C=P
;
Проверим на прямоугольном треугольнике с катетами 3 и 5:
3E 4E B12 F. F. \ вызываем нашу подпрограмму и печатаем результат
12.000000 5.0000000 Ok
3^2+4^2=25. Квадратный корень из 25=5. 5+3+4=12– что является истиной. В данном случае специально подобрана Пифагорова тройка, для простоты проверки. Проверим общий случай:
3E 5E B12 F. F.
13.830952 5.8309519 Ok
Можете самостоятельно проверить истинность теста.
Пример 13. Найти площади двух кругов (с общим центром) и кольца между ними. Даны радиусы R1 и R2, причем R1 > R2. Как и ранее сперва напишем слово для целочисленных чисел. Если не совсем понятно почему не написать сразу универсальный вариант для вещественных данных, то поясняю: отладка в этом случае наиболее проста для сложных слов и для начинающих программистов, так как все данные на стеке видны сразу после их ввода, то удается проверить и понять работу кода вводя команду за командой. Этого преимущества лишены операторы для работы с вещественными числами. После написания слова с целыми аргументами не сложно перевести его код для работы с вещественными и получить результат того же типа.
: B13 ( R1 R2 -> S1 S2 S3) \ S1=Pi*R1^2 S2= Pi*R2^2 S3=S1-S2
SWAP DUP * 314 * \ R1 R2 -> R2 (Pi*R1^2)=S1
SWAP DUP * 314 * \ R2 S1 -> S1 (Pi*R2^2)=S2
2DUP – \ S1 S2 -> S1 S2 (S1-S2)=S3
;
Запустим наше слово на примере двух кругов с радиусами 25 и 15 соответственно.
25 15 B13
Ok ( 196250 70650 125600 )
Выше приведен вариант кода с целочисленными аргументами, причем все 3 площади больше в 100 раз из-за того, что мы приняли Пи равным 314. Перепишем пример для случая вещественных аргументов.
: B13 ( R1 R2 -> S1 S2 S3) \ S1=Pi*R1^2 S2= Pi*R2^2 S3=S1-S2
FSWAP