Представители школы Э. Маха, и особенно в этом преуспел его ученик А. Эйнштейн, считают, что чем меньше исходных предпосылок имеет теория, тем она совершеннее. И вообще, если бы удалось всю теорию вывести из одного понятия, то это был бы идеальный случай. По всей видимости именно из этих соображений автор теории относительности изобрел пространственно-временной континуум, оматеризовав при этом пространство и время. Приверженцами монизма являются, по сути дела, все ортодоксальные теоретики.
Плюралисты же, наоборот, считают, что нельзя ограничиться каким-то определенным набором несводимых к единому началу понятий. Рожденный Г. Лейбницем плюрализм до недавнего времени считался философией современных идеалистов, к которым причисляли прагматистов, неопозитивистов и других "-истов". Теперь же плюрализм возведен в ранг государственной политики. Своего рода умеренным плюрализмом можно считать конвенционализм А. Пуанкаре, согласно которому вопрос об исходных научных понятиях должен решаться посредством соглашения (конвенции) между учеными, исходя из соображений простоты, удобства и других признаков.
Большой популярностью до сих пор пользуется дуализм Декарта и Канта, которые пытались примирить материализм и идеализм. Заметный след в науке оставили триады Гегеля, которыми, по выражению Ленина, "кокетничал" Маркс в 1 главе "Капитала", в результате чего, по его мнению, никто из марксистов не понял Маркса полвека спустя. Но не поняли (можно утверждать, что и до сих пор не понимают) не только Маркса, но и Гегеля. Очевидно по этой причине, а может быть вследствие осознания их величия и гениальности, критики не осмелились "наклеить" хлесткий "ярлык" в виде какого-нибудь "-изма" на учение, основанное на триадах.
Не встречается в философской литературе такого же "-изма", в основе которого лежала бы четверка исходных понятий, хотя и гегелевские крути кругов, и квадратуры Маркса, и четырехэлементная теория отражения Ленина чем-то напоминают логические квадраты Пселлома, предложенные им еще в XI веке.
Тем не менее, именно Ленин беспощадно громил авторов четвертого измерения пространства. Но делал он это, как теперь выясняется совершенно напрасно, ибо как раз четвертого геометрического измерения не хватает для исчерпывающего представления, например, о форме (кроме трех габаритных размеров необходимо еще иметь структурный параметр, который в простейшем случае может быть представлен толщиной стенки или размером внутренней полости).
В защиту четвертого измерения свидетельствует тот факт, что замкнутые кривые, с внутренними петлями, представленные одним уравнением в одной системе координат могут быть получены сравнительно простыми средствами, если это уравнение имеет четвертую степень. Еще более убедителен этот факт, если таких замкнутых кривых, похожих друг на друга, надо иметь не одну, а несколько (в случае