Большие данные, цифровизация и машинное обучение для собственников и топ-менеджеров, Или как зарабатывать больше с помощью информации. Алексей Сергеевич Гуржиев. Читать онлайн. Newlib. NEWLIB.NET

Автор: Алексей Сергеевич Гуржиев
Издательство: Автор
Серия:
Жанр произведения:
Год издания: 2023
isbn:
Скачать книгу
рынка, которые в подавляющем большинстве уже активно его применяют[2] и, по данным консалтинговой компании McKinsey & Company, делают это практически во всех возможных областях (от ретейла и туризма до фармакологии и электрогенерации) и почти в 4 раза чаще, чем остальные фирмы. Судя по такой существенной разнице, машинное обучение является одним из основных инструментов, которыми должна уметь пользоваться организация, если она стремится выбиться в лидеры.

      По данным аналитиков, после внедрения машинного обучения у компаний в среднем себестоимость производства снижается на 10–20 %, а выручка растет на 5–10 % в зависимости от сферы деятельности. Это невероятная выгода. Поэтому почти 70 % лидеров рынка говорят о том, что машинное обучение является частью их стратегии и у них составлены многолетние корпоративные планы по его дальнейшему развитию.

      Бытует мнение, что при внедрении машинного обучения придется нанимать много сотрудников для поддержания работы созданных систем. Но по статистике лишь 30 % компаний придется увеличить штат на 3 %. И только у 5 % – он вырастет на 10 %. При этом в фирмах, связанных с тяжелой промышленностью, общее количество сотрудников, наоборот, уменьшится на 3–10 %.

      Цель цифровизации и сбора больших данных

      Распознавание собак на фотографиях – это отличная функция. Но вряд ли с ее помощью можно создать несколько успешных бизнес-продуктов, которые принесут реальную прибыль. Поэтому давайте оставим этот пример и зададимся более глобальным вопросом: «Как за счет больших данных и машинного обучения увеличить прибыль компании или по крайней мере вывести ее на самоокупаемость?» В этом вопросе речь идет о двух совершенно разных состояниях бизнеса. Но они оба могут быть скорректированы, с одной стороны, благодаря аналитике и ее инструментам, с другой – за счет возможности предсказания будущего на основе больших данных. Разберем все по порядку.

      Как заработать больше

      Рассмотрим аналитический процесс (анализ больших бизнес-данных) с точки зрения обычного человека. В качестве примера возьмем продажи питьевых йогуртов. Для проведения анализа люди используют графики. Например, график зависимости средней прибыли компании от количества бутылок йогурта в одной проданной упаковке:

      На таком графике любой человек с легкостью может найти самый высокий показатель и сделать вывод: «Если класть в упаковку по 5 йогуртов, чистая прибыль будет максимальной и составит 160 рублей за одну такую проданную упаковку». И это верное заключение, с одной лишь оговоркой. Двухмерный график строится тогда, когда все остальные параметры зафиксированы. Например, этот график справедлив при значении объема бутылки в 100 мл. Но как он поведет себя, если построить его исходя из разных объемов емкости? Давайте попробуем изобразить трехмерный вариант такого графика.

      С изменением объема одной бутылки изменяется и чистая прибыль. Поэтому


<p>2</p>

Arif Cam, Michael Chui, Bryce Hall (2019) Global AI Survey: AI proves its worth, but few scale impact (https://www.mckinsey.com/featured-insights/artificial-intelligence/global-ai-survey-ai-proves-its-worth-but-few-scale-impact).