Большие данные, цифровизация и машинное обучение для собственников и топ-менеджеров, Или как зарабатывать больше с помощью информации. Алексей Сергеевич Гуржиев. Читать онлайн. Newlib. NEWLIB.NET

Автор: Алексей Сергеевич Гуржиев
Издательство: Автор
Серия:
Жанр произведения:
Год издания: 2023
isbn:
Скачать книгу
что позволило бы руководству лучше оценивать текущую ситуацию. Цель работы этих специалистов – найти пути получения прибыли из собранной информации. Аналитики думают только о деньгах. Они не умеют настраивать хранилища, управлять озером данных или круто программировать, поэтому инженеры по данным должны предоставлять им хорошо подготовленную информацию в удобной форме. Но именно аналитики знают, как из этих данных получить дополнительную маржу, как превратить данные в деньги.

      Собранные большие данные позволяют буквально предсказывать будущее в результате учета значимых связей и зависимостей между отдельными компонентами данных, выявленных программными алгоритмами. Созданием инструментов для подобных прогнозов занимаются специалисты по машинному обучению (Machine Learning Engineer). Они могут заставить компьютер проанализировать тысячи собранных параметров с миллионами значений, чтобы предсказать практически любой экономический показатель. Имея достаточно данных и используя машинное обучение, профессионалы могут ответить на любые вопросы, касающиеся оптимизации продукта и максимизации прибыли.

      Вспомните пример с ипотечным кредитом и странным параметром «количество занятых одноместных номеров в трехзвездочных гостиницах в радиусе 500 метров от приобретаемой квартиры». На наш обывательский взгляд, данный пункт вряд ли влияет на спрос жилья в районе. А собственник бизнеса или топ-менеджер никогда не попросит инженера по данным построить график зависимости прибыли от этого параметра на информационной панели в системе компании. Но с точки зрения машинного обучения данный фактор может внести существенный вклад в предсказания, потому что компьютер, в отличие от человека, способен уловить любую, даже еле заметную, связь в параметрах.

      Все три профессии – аналитик, инженер по данным и специалист по машинному обучению – называют одним термином «специалисты по данным» (англ. ”Data Scientists”). Благодаря их слаженной работе руководство компании может в реальном времени наблюдать за всеми показателями, прогнозировать будущее и тестировать предложения по смене стратегии компании.

      Как начать собирать большие данные

      В каждой компании существует свой уникальный производственный процесс. Любая его стадия может быть описана определенными величинами в цифрах: количество выполненных операций, себестоимость использованных комплектующих, затраченное время и количество задействованных сотрудников и т. д. и т. п. Эти цифры необходимо собирать и хранить, чтобы в будущем найти между ними взаимосвязь. Обнаружив ее, можно будет разработать стратегию развития компании, выделить основные показатели и определить для них желаемые значения. Без количественной оценки конкретных параметров любое улучшение в компании будет казаться сотрудникам очередной бесполезной инициативой руководства. В такой ситуации топ-менеджер или собственник не сможет аргументированно доказать необходимость изменений.

      Попробуем