Оптимизация в Python. Джейд Картер. Читать онлайн. Newlib. NEWLIB.NET

Автор: Джейд Картер
Издательство: Автор
Серия:
Жанр произведения:
Год издания: 2023
isbn:
Скачать книгу
= find_optimal_task_order(tasks, task_times)

      print(f"Оптимальный порядок выполнения задач: {optimal_order}")

      ```

      В этом примере мы создаем все возможные перестановки задач и вычисляем общее время выполнения для каждой из них. Затем мы выбираем последовательность задач с минимальным временем выполнения. Этот метод может быть полезным в ситуациях, когда вы хотите найти оптимальное решение для задач, где порядок выполнения имеет значение.

      Обратите внимание, что в реальных задачах с большими наборами данных или более сложными условиями задачи поиск всех перестановок может быть вычислительно сложным и требовать оптимизации.

      Изучение нотации Big O и анализ сложности алгоритмов помогают разработчикам принимать более обоснованные решения в выборе алгоритмов и структур данных для оптимизации программного обеспечения. Это важное знание для создания эффективных и быстрых программ.

3.2. Способы измерения времени выполнения

      В этой главе будут рассмотрены различные методы и инструменты для измерения времени выполнения операций или кода в программировании.

      3.2.1. Использование встроенных средств языка

      Измерение времени выполнения кода является важной задачей в программировании, особенно при оптимизации программ и выявлении узких мест в производительности. Множество языков программирования предоставляют встроенные инструменты и библиотеки для выполнения этой задачи.

      Единицы измерения времени могут варьироваться, включая секунды, миллисекунды, микросекунды и наносекунды. Выбор правильной единицы зависит от скорости выполнения кода. Для измерения времени, фиксируются временные метки перед и после выполнения кода, а затем вычисляется разница между ними.

      Встроенные инструменты и модули в языках программирования упрощают процесс измерения времени выполнения. Например, модуль `time` в Python предоставляет функцию `time()`, которая возвращает текущее время с начала эпохи. Фиксация временных меток до и после выполнения кода позволяет определить время выполнения.

      Усреднение результатов может увеличить точность измерений. Выполнение кода несколько раз и усреднение результатов помогает уменьшить влияние случайных факторов на измерения.

      Измерение времени выполнения – это инструмент для оптимизации кода, выявления проблем производительности и сравнения разных методов решения задач. Разные языки программирования предоставляют разные инструменты для измерения времени выполнения, но общие принципы остаются применимыми.

      Разберем как это может быть сделано на примере Python:

      ```python

      import time

      start_time = time.time()

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «Литрес».

      Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEAZABkAAD/2wBDAAoHBwgHBgoICAgLCgoLDhgQDg0NDh0VFhEYIx8lJCIfIiEmKzcvJik0KSEiMEExNDk7Pj4+JS5ESUM8SDc9Pjv/2wBDAQoLCw4NDhwQEBw7KCIoOzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozv/wAARCAHCA2cDASIAAhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAIGAwQFAQf/xABIEAABAwMBBQUFCAIBAwIEBQUBAAIDBAUREgYTITGRQVFSU5I