Принцип работы MSE заключается в следующем:
1. Для каждого примера в обучающем наборе данных модель делает предсказание. Это предсказание может быть числовым значением, таким как цена дома или температура, и модель пытается предсказать это значение на основе входных признаков.
2. Разница между предсказанным значением и фактическим значением (истинным ответом) для каждого примера вычисляется. Эта разница называется "остатком" или "ошибкой" и может быть положительной или отрицательной.
3. Эти ошибки возводятся в квадрат, что позволяет избежать проблем с отрицательными и положительными ошибками, которые могут взаимно компенсироваться. Ошибки возводятся в квадрат, чтобы большим ошибкам присваивать больший вес.
4. Затем вычисляется среднее значение всех квадратов ошибок. Это среднее значение является итоговой MSE.
Формула MSE для одного примера (i) выглядит следующим образом:
MSE(i) = (Предсказанное значение(i) – Фактическое значение(i))^2
Для всего набора данных с N примерами формула MSE выглядит так:
MSE = (1/N) * Σ (Предсказанное значение(i) – Фактическое значение(i))^2 от i=1 до N
Чем меньше значение MSE, тем ближе предсказания модели к фактическим данным, и, следовательно, модель считается более точной. Однако стоит помнить, что MSE чувствителен к выбросам и может быть неподходящим для задач, где ошибки в предсказаниях могут иметь разную важность.
–
Кросс
-
энтропия
:
Широко применяется в задачах классификации и измеряет разницу между распределением вероятностей
,
предсказанным моделью
,
и фактическими метками классов
.
Кросс-энтропия (Cross-Entropy) – это важная функция потерь, широко используемая в задачах классификации, особенно в машинном обучении и глубоком обучении. Она измеряет разницу между распределением вероятностей, предсказанным моделью, и фактическими метками классов в данных. Кросс-энтропия является мерой того, насколько хорошо модель приближает вероятностное распределение классов в данных.
Принцип работы кросс-энтропии заключается в сравнении двух распределений: предсказанных вероятностей классов моделью и фактических меток классов в данных. Её можно описать следующим образом:
1. Для каждого примера в наборе данных модель выдает вероятности принадлежности этого примера к разным классам. Эти вероятности могут быть представлены в виде вектора вероятностей, где каждый элемент вектора соответствует вероятности принадлежности примера к конкретному классу.
2. Фактичные метки классов для каждого примера также представляются в виде вектора, где один элемент вектора равен 1 (класс, к которому пример принадлежит), а остальные элементы равны 0.
3. Сравнивая вероятности, предсказанные моделью, с фактичными метками классов, вычисляется кросс-энтропия