2. Проклятие размерности – гл. 2 «Основы статистического обучения» Тревор Хасти, Роберт Тибширани, Джером Фридман. Важность этой проблемы можно понять из следующей цитаты тех же авторов:
«С увеличением размерности сложность функций многих переменных может расти экспоненциально, и если мы хотим иметь возможность оценивать такие функции с той же точностью, что в пространствах малой размерности, то нам необходимо, чтобы размер нашего обучающего множества также рос экспоненциально» (стр. 24 английского издания).
Здесь же объясняется разложение среднеквадратической ошибки (MSE) на дисперсию и смещение. Привожу только вывод формулы для примера:
В учебнике Машинное обучение указывается следующее.
«В контексте моделей МО [машинного обучения] дисперсия измеряет постоянство (либо изменчивость) прогноза модели для классификации отдельного образца при многократном обучении модели, например, на разных подмножествах обучающего набора данных. Мы можем сказать, что модель чувствительна к случайности обучающих данных. Напротив, смещение измеряет, насколько далеко прогнозы находятся от коррективных значений в целом при многократном обучении модели на разных обучающих наборах данных; смещение представляет собой меру систематической ошибки, которая не является результатом случайности».
3. Z-оценка часто используется, например для определения выбросов. Вот формула для расчета:
В этой формуле: x – это единичное значение из набора данных; мю – среднее набора данных; сигма – стандартное отклонение.
4. Доверительные интервалы, см. подробнее в [1.3.5.2. Confidence Limits for the Mean] (https://www.itl.nist.gov/div898/handbook/eda/section3/eda352.htm)
5. Дисперсия, ковариация, корреляция. Разница между дисперсией, ковариацией и корреляцией:
1) дисперсия – это мера изменчивости конкретного значения от среднего значения по всему набору данных;
2) ковариация – это мера взаимосвязи между изменчивостью двух переменных. Ковариация зависит от масштаба, поскольку она не стандартизирована;
3) корреляция – это связь между изменчивостью двух переменных. Корреляция стандартизирована, что делает ее не зависящей от масштаба.
Справочное руководство [Engineering statistics handbook] (https://www.itl.nist.gov/div898/handbook/eda/eda.htm) содержит пример схемы анализа данных:
1. Посчитать базовые статистики:
a) среднее;
b) стандартное отклонение. При этом надо помнить следующие эмпирические правила. Приблизительно 60—78% данных находятся в пределах одного