Нейросети практика. Джейд Картер. Читать онлайн. Newlib. NEWLIB.NET

Автор: Джейд Картер
Издательство: Автор
Серия:
Жанр произведения:
Год издания: 2023
isbn:
Скачать книгу
запроса: Разработчик использует библиотеку или SDK для выполнения запроса к API. Запрос отправляется на удаленный сервер, где обрабатывается, и в ответ возвращаются запрошенные данные.

      Обработка ответа: Разработчик обрабатывает полученный ответ от API. Это может включать извлечение и преобразование данных для дальнейшего использования в нейронных сетях.

      Использование API позволяет разработчикам получать доступ к внешним данным и интегрировать их в свои приложения и модели глубокого обучения, расширяя возможности и источники данных для обучения и прогнозирования.

      2. Оценка качества данных:

      После извлечения данных из источника, важно провести оценку качества этих данных. Это позволяет выявить потенциальные проблемы, такие как пропущенные значения, выбросы, некорректные или несогласованные данные. Оценка качества данных является важным шагом перед их использованием в нейронных сетях, так как некорректные или неполные данные могут привести к неправильным результатам и искажению выводов модели.

      Вот некоторые основные аспекты оценки качества данных:

      Пропущенные значения: Проверка наличия пропущенных значений является важной частью оценки данных. Пропущенные значения могут возникать из-за ошибок в сборе данных или отсутствия информации. Необходимо определить, в каких столбцах или переменных присутствуют пропущенные значения и решить, как с ними обращаться. Возможные подходы включают удаление строк или столбцов с пропущенными значениями, заполнение пропущенных значений средним или медианным значением, или использование более сложных методов заполнения пропусков.

      Выбросы: Выбросы – это значения, которые значительно отличаются от остальных данных. Они могут быть результатом ошибок измерения, ошибок ввода данных или представлять реальные аномалии. Проверка наличия выбросов помогает определить, есть ли в данных аномальные значения, которые могут повлиять на обучение модели. Выбросы могут быть обработаны путем удаления, замены на среднее или медианное значение, или использования более сложных методов обработки выбросов, в зависимости от конкретной ситуации.

      Некорректные или несогласованные данные: Важно проверить данные на наличие ошибок, несогласованностей или неожиданных значений. Например, можно проверить соответствие типов данных (например, числовые данные должны быть числами, а категориальные данные должны быть категориями), правильность формата данных и согласованность значений в разных столбцах или переменных. Если обнаружены ошибки или несогласованности, необходимо принять соответствующие меры для их исправления или исключения из данных.

      Для оценки качества данных можно использовать различные инструменты и методы, включая статистические показатели, визуализацию данных, анализ частоты значений и многое другое. Важно провести всестороннюю оценку данных перед их использованием в нейронных сетях, чтобы обеспечить надежность и точность результатов моделирования.

      3.