Bir sayıyı kendisiyle çarptığımızda bu sayının karesini elde etmiş oluruz. Bu durumu üst ya da kök üssü olarak adlandırılan küçük bir iki ile gösteririz.
Üçün karesi dokuzdur. Bu da üçü, dokuzun karekökü yapar. Karekök almak bir sayının karesinin alınmasının tam tersidir. On altının karekökü dörttür, çünkü dördün karesi on altıdır.
Dokuz ve on altı gibi sayılar tam karedirler çünkü bu gibi sayıların karekökü bir tamsayıdır. Kesirler ve ondalık sayılar dahil olmak üzere her sayının karesi alınabilir. Her pozitif sayının da karekökü alınabilir.
(Bu konu hakkında daha fazla bilgi için bkz. sayfa 58)
İrrasyonel sayılar ile rasyonel sayıları bir araya getirdiğimizde matematikçilerin gerçek (reel) sayılar olarak nitelendirdiği sayıları elde ederiz. Daha önce bahsettiğimiz sayıların bir örüntü oluşturduğunu (rasyonel-irrasyonel) fark ettiyseniz gerçek olmayan sayıların da var olabileceğinden şüphelenebilirsiniz ve haklısınız da. Ancak burada durup hayvanat bahçeme “Sonsuz Gerçek Sayılar Hayvanat Bahçesi” ismini vereceğim. Çoğu hayvanat bahçesi hayvanlarını türlerine göre ayırır, bu yüzden de kendi bahçemi örtüşen sayı türlerine göre organize edebilirim. Haritası şu şekilde görünebilir ve hayvanat bahçesinde geçireceğiniz gününüzü planlamanıza yardımcı olması için mutlaka görülmesi gereken birkaç yer de ekledim:
Hayvanat bahçemin Alman matematikçi David Hilbert’e (1862-1943) çok şey borçlu olduğu gerçeğini kabul etmem gerekir. Matematiğe çok büyük katkısı olmuştur ancak en çok da bu konunun lideri ve savunucusu olmasıyla bilinir. 1900 yılında Uluslararası Matematik Kongresi için – günümüzde Hilbert problemleri olarak bilinen – yirmi üç çözülmemiş problemden oluşan bir liste çıkarmıştır ve bu problemlerden üçü hâlâ çözülememiştir. Hayvanat bahçemin kaynağını oluşturan Hilbert Oteli düşünce deneyi, Hilbert’in sonsuz sayıda misafirin doldurduğu sonsuz sayıda odası bulunan bir otel hakkındaki derin düşünceleriyle ilgilidir. Hilbert’e göre otelin ilk müşterilerini oda numaralarını ikiyle çarpıp elde ettiğimiz yeni numarayı taşıyan odaya yerleşmeye ikna edersek, otele sonsuz sayıda müşteriyi yerleştirebiliriz. Mevcut müşteriler artık çift sayılı odalarda kalacaktır ve tek sayılı odalar da (bunların sayısı da sonsuz olacaktır) yeni gelenlere kalacaktır.
2. Bölüm
CANTOR İLE SAYMAK
Galileo Galilei (1564-1642), gezegenimizin Güneş’in etrafında döndüğüne dair kâfir inancından dolayı İtalya’da ev hapsindeyken Galileo paradoksu olarak bilinen hoş bir bulmaca ortaya atmıştır.
Bulmacaya göre bazı doğal sayılar mükemmel kareyken (bkz. Sayfa 15) çoğu değildir ve bu yüzden de kare olmayanların sayısı karelerden daha fazla olmalıdır. Ancak her doğal sayının mükemmel bir kare oluşturmak üzere karesi alınabilir. Dolayısıyla karelerin sayısı, doğal sayıların sayısına eşit olmalıdır. Bu da bir paradokstur; yani aynı anda ikisinin birden doğru olamayacağı iki mantıklı önerme sözkonusudur.
Daha önce de belirttiğim gibi sayı kuramcıları sonsuzluğun doğası ve onun tuhaf aritmetiğini ele alırlar. Sonsuz Matematik Hayvanat Bahçesi’ni gözden geçirirken kullandığımız şey olan kümeler kuramı Alman matematikçi Georg Cantor (1845-1918) tarafından icat edilmiştir. Aslında farklı türlerde sonsuzluk olduğunu bulmuştur. Kümelerin niceliği üzerinde çalışmıştır. Bu da kümenin kaç tane üyesi olduğu anlamına gelir. Örneğin, A kümesini Güneş sisteminin gezegenleri olarak tanımlarsam A kümesinin niceliği sekiz olur (Plüton’un neden artık bir gezegen olmadığına dair daha fazla bilgi için bkz. sayfa 132).
Cantor, sonsuz kümeleri de incelemiştir. Doğal sayılar sonsuzdur ancak Cantor bunların sayılabilir sonsuz olduğunu söyler; çünkü birden yukarı doğru saydıkça sonsuza doğru hareket eder ve ilerleme kaydederiz. Asla sonsuzluğa varamayız ancak ona yaklaşabiliriz. Cantor doğal sayılar kümesinin bir alef sıfır ya da
Şayet kümem sıfırdan bire kadar tüm rasyonel sayılar olsaydı sıfırdan başlayabilir ve bire kadar giden bütün kesirleri ele almaya çalışabilirdim. Bu kesirler için tüm olası paydaları ele alırsam yine doğal sayıları elde ederim. Kesirlerin payları da ayrıca doğal sayıların çeşitli kısımları olacaktı ve sıfırdan bire kadar olan rasyonel sayılar bile
Galileo’nun paradoksuna geri dönecek olursak doğal sayılar kümesi ile mükemmel kare sayılar kümesinin her ikisinin de
Gerçekte
Cantor