Симметрия как таковая – это прерогатива математики и физики, но диссимметрия – биологии и физики. Геометрия теоретически решает пространственные задачи. Однако теория теорией, а решать, где же она переходит в реальность, материализуется, образует и формирует диссимметрию, необходимо, и как можно быстрее… Физики давно ищут место переходов симметрии в физике элементарных частиц. Интересной проблемой квантовой теории поля является включение в единую калибровочную схему и сильного взаимодействия («великое объединение»). Другим перспективным направлением объединения считается суперкалибровочная симметрия, или просто суперсимметрия. Предполагается, что вакуум является симметрией более высокого порядка, чем известные на сегодня виды симметрии. Нарушения симметрии, которые мы видим повсюду, не затрагивают динамическую симметрию вакуума. Динамическая симметрия вакуума не противоречит идее развития, потому что симметрия вакуума сохраняется и тогда, когда нарушаются другие виды симметрии.
В динамических системах процессы формообразования зависят от типа поведения системы, и от т. н. аттракторов. ГПК – это динамическая система с индивидуальными частотными характеристиками. Это система с обратной связью, то есть – она зациклена. Такие динамические системы могут иметь четыре типа поведения: состояние равновесия, периодическое движение, квазипериодическое и хаотическое движение. Этим типам решений соответствуют аттракторы системы в виде устойчивого равновесия, предельного цикла, квазипериодического аттрактора (p-мерного тора) и хаотического (или странного) аттрактора. Важным