Neural networks guide. Unleash the power of Neural Networks: the complete guide to understanding, Implementing AI. Александр Чичулин. Читать онлайн. Newlib. NEWLIB.NET

Автор: Александр Чичулин
Издательство: Издательские решения
Серия:
Жанр произведения:
Год издания: 0
isbn: 9785006012615
Скачать книгу
Feature Hashing:

      – Feature hashing, or the hashing trick, is a technique that converts categorical variables into a fixed-length vector representation.

      – It applies a hash function to the categories, mapping them to a predefined number of dimensions.

      – Feature hashing can be useful when the number of categories is large and encoding them individually becomes impractical.

      The choice of technique for dealing with categorical variables depends on the nature of the data, the number of categories, and the relationships between categories. One-hot encoding and embedding are commonly used techniques, with embedding being particularly powerful when capturing complex category interactions. Careful consideration of the appropriate encoding technique ensures that categorical variables are properly represented and can contribute meaningfully to the neural network’s predictions.

      Part II: Building and Training Neural Networks

      Feedforward Neural Networks

      Structure and Working Principles

      Understanding the structure and working principles of neural networks is crucial for effectively utilizing them. In this chapter, we will explore the key components and working principles of neural networks:

      1. Neurons:

      – Neurons are the basic building blocks of neural networks.

      – They receive input signals, perform computations, and produce output signals.

      – Each neuron applies a linear transformation to the input, followed by a non-linear activation function to introduce non-linearity.

      2. Layers:

      – Neural networks are composed of multiple layers of interconnected neurons.

      – The input layer receives the input data, the output layer produces the final predictions, and there can be one or more hidden layers in between.

      – Hidden layers enable the network to learn complex representations of the data by extracting relevant features.

      3. Weights and Biases:

      – Each connection between neurons in a neural network is associated with a weight.

      – Weights determine the strength of the connection and control the impact of one neuron’s output on another’s input.

      – Biases are additional parameters associated with each neuron, allowing them to introduce a shift or offset in the computation.

      4. Activation Functions:

      – Activation functions introduce non-linearity to the computations of neurons.

      – They determine whether a neuron should be activated or not based on its input.

      – Common activation functions include sigmoid, tanh, ReLU (Rectified Linear Unit), and softmax.

      5. Feedforward Propagation:

      – Feedforward propagation is the process of passing the input data through the network’s layers to generate predictions.

      – Each layer performs computations based on the inputs received from the previous layer, applying weights, biases, and activation functions.

      – The outputs of one layer serve as inputs to the next layer, progressing through the network until the final predictions are produced.

      6. Backpropagation:

      – Backpropagation is an algorithm used to train neural networks.

      – It calculates the gradients of the loss function with respect to the network’s weights and biases.

      – Gradients indicate the direction and magnitude of the steepest descent, guiding the network’s parameter updates to minimize the loss.

      – Backpropagation propagates the gradients backward through the network, layer by layer, using the chain rule of calculus.

      7. Training and Optimization:

      – Training a neural network involves iteratively adjusting its weights and biases to minimize the difference between predicted and actual outputs.

      – Optimization algorithms, such as gradient descent, are used to update the parameters based on the calculated gradients.

      – Training typically involves feeding the network with labeled training data, comparing the predictions with the true labels, and updating the parameters accordingly.

      Understanding the structure and working principles of neural networks helps in designing and training effective models. By adjusting the architecture, activation functions, and training process, neural networks can learn complex relationships and make accurate predictions across various tasks.

      Implementing a Feedforward Neural Network

      Implementing a feedforward neural network involves translating the concepts and principles into a practical code implementation. In this chapter, we will explore the steps to implement a basic feedforward neural network:

      1. Define the Network Architecture:

      – Determine the number of layers and the number of neurons in each layer.

      – Decide on the activation functions to be used in each layer.

      – Define the input and output dimensions based on the problem at hand.

      2. Initialize the Parameters:

      – Initialize the weights and biases for each neuron in the network.

      – Random initialization is commonly used to break symmetry and avoid getting stuck in local minima.

      3. Implement the Feedforward Propagation:

      – Pass the input data through the network’s layers, one layer at a time.

      – For each layer, compute the weighted sum of inputs and apply the activation function to produce the layer’s output.

      – Forward propagation continues until the output layer is reached, generating the network’s predictions.

      4. Define the Loss Function:

      – Choose an appropriate loss function that measures the discrepancy between the predicted outputs and the true labels.

      – Common loss functions include mean squared error (MSE) for regression problems and cross-entropy loss for classification problems.

      5. Implement Backpropagation:

      – Calculate the gradients of the loss function with respect to the network’s weights and biases.

      – Propagate the gradients backward through the network, layer by layer, using the chain rule of calculus.

      – Update the weights and biases using an optimization algorithm, such as gradient descent, based on the calculated gradients.

      6. Train the Network:

      – Iterate through the training data, feeding it to the network, performing forward propagation, calculating the loss, and updating the parameters through backpropagation.

      – Adjust the learning rate, which controls the step size of parameter updates, to balance convergence speed and stability.

      – Monitor the training progress by evaluating the loss on a separate validation set.

      7. Evaluate the Network:

      – Once the network is trained, evaluate its performance on unseen data.

      – Use the forward propagation to generate predictions for the evaluation dataset.

      – Calculate relevant metrics, such as accuracy, precision, recall, or mean squared error, depending on the problem type.

      8. Iterate and Fine-tune:

      – Experiment