Новые идеи в философии. Сборник номер 5. Коллектив авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Коллектив авторов
Издательство:
Серия: Новые идеи в философии
Жанр произведения: Философия
Год издания: 2015
isbn: 978-5-4458-3858-6
Скачать книгу
Кантора, Веронезе и др. не только подтвердили, но и значительно расширили и обобщили установленное Лейбницем положение. Они показали, что не только бесконечно малому, но и в такой же мере и бесконечно большому может быть присвоено строго определенное математическое значение, что введение принципа бесконечного в математику значительно расширяет круг доступных ей проблем и открывает ей путь к обнаружению тех основных методологических нитей, которые могли бы связать все ее разрозненные части в одно стройное систематическое целое.

      Где же логические корни научной плодотворности этого принципа и каково вообще логическое значение того внутреннего преобразования, которое испытала под его влиянием математика? – Вполне справедливо указывают на то, что современная математика, в противоположность античной, отличается качественным, а не количественным характером. Действительно, сущность числа она усматривает не в его количественной исчислимости, а в свойственной ему качественной закономерности. Ибо однозначная определенность и отличимость числа обусловлена исключительно этой качественной закономерностью и не зависит вовсе от его количественная значения (его конечности или бесконечности). Всякое число необходимо входит, как член, в какой-нибудь закономерно построенный ряд чисел и занимает в нем определенное место. Если известен закон ряда и даны отношения искомого числа к остальным его членам, т. е. отношения, которыми обусловливается занимаемое им в данном ряде место, то, независимо от его количественного значения, выполнены все условия, которые необходимы и вместе с тем достаточны для его полного и исчерпывающего определения. Количественные же значения математических чисел и величин (их исчислимость и измеримость) представляют лишь частные случаи их качественных значений и потому применимы только в пределах конечного. Что это так, т. е. что принцип Архимеда, действительно, не охватывает всей сферы математического бытия, а имеет силу лишь в ограниченной ее части, явствует уже из того, что, даже оставаясь в границах конечных рациональных чисел, математика сплошь и рядом наталкивается на такие задачи, которые без выхождения за пределы конечного либо вовсе неразрешимы, либо разрешимы только при допущении некоторой погрешности, противоречащей самому существу математики как точной науки (например, когда в результате арифметических действий над конечными рациональными числами получаются иррациональные или мнимые числа). Вместе с введением принципа бесконечного в математику сразу устраняются все эти затруднения. Sub specie infiniti раскрывается полная независимость основных законов математического объекта от его количественных определений, математика освобождается от условных ограничений, которые налагает на нее сфера конечного, и понятие числа, благодаря сведению всех количественных определений к обосновывающим их качественным закономерностям, расширяется до тех пределов, которые отвечают его истинной логической сущности. Только