Нейросети начало. Джейд Картер. Читать онлайн. Newlib. NEWLIB.NET

Автор: Джейд Картер
Издательство: Автор
Серия:
Жанр произведения:
Год издания: 2023
isbn:
Скачать книгу
от используемой библиотеки и языка программирования. Ниже приведен пример кода на языке Python, используя библиотеку TensorFlow:

      # Импорт библиотек

      import tensorflow as tf

      import numpy as np

      from sklearn.model_selection import train_test_split

      # Подготовка данных

      X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])

      y = np.array([[0], [1], [1], [0]])

      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

      # Определение архитектуры нейросети

      model = tf.keras.Sequential([

      tf.keras.layers.Dense(4, input_shape=(2,), activation='relu'),

      tf.keras.layers.Dense(1, activation='sigmoid')

      ])

      # Инициализация весов

      model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

      # Обучение нейросети

      history = model.fit(X_train, y_train, epochs=1000, validation_data=(X_test, y_test))

      # Оценка качества модели

      loss, accuracy = model.evaluate(X_test, y_test)

      print('Loss:', loss)

      print('Accuracy:', accuracy)

      # Финальное тестирование

      X_new = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])

      y_pred = model.predict(X_new)

      print('Predictions:', y_pred)

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «Литрес».

      Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCAhhBdwDASIAAhEBAxEB/8QAGwABAQADAQEBAAAAAAAAAAAAAAECAwQFBgf/xAAaAQEBAQEBAQEAAAAAAAAAAAAAAQUEAwIG/9oADAMBAAIQAxAAAAH0wLKALKALKAAUAFAsoABQALKAUAFAAsoAsoAsoAAsosoABQAUACygCygCygFAAsoABQLKAAUAFABQALKALKAUACygAFAsoABQALKAUAFAAsoAsoAsoAsoAsoABQAUAHyYFlAFlAFlAAKACgWUAAoAFlAKACgAWUAWUAWUAAWUWUAAoAKABZQBZQBZQCgAWUAAoFlAAKACgAoAFlAFlAKABZQACgWUAAoAFlAKACgAWUAWUAWUAWUAWUAAoAKAD5MCygCygCygAFABQLKAAUACygFABQALKALKALKAALKLKAAUAFAAsoAsoAsoBQALKAAUCygAFABQAUACygCygFAAsoABQLKAAUACygFABQALKALKALKALKALKAAUAFAB8mBZQBZQBZQACgAoFlAAKABZQCgAoAFlAFlAFlAAFlFlAAKACgAWUAWUAWUAoAFlAAKBZQACgAoAKABZQBZQCgAWUAAoFlAAKABZQCgAoAFlAFlAFlAFlAFlAAKACgA+TAsoAsoAsoABQAUCygAFAAsoBQAUACygCygCygACyiygAFABQALKALKALKAUACygAFAsoABQAUAFAAsoAsoBQALKAAUCygAFAAsoBQAUACygCygCygCygCygAFABQAfJgWUAWUAWUAAoAKBZQACgAWUAoAKABZQBZQBZQABZRZQACgAoAFlAFlAFlAKABZQACgWUAAoAKACgAWUAWUAoAFlAAKBZQACgAWUAoAKABZQBZQBZQBZQBZQACgAoAPkwLKALKALKAAUAFAsoABQALKAUAFAAsoAsoAsoAAsosoABQAUACygCygCygFAAsoABQLKAAUAFABQALKALKAUACygAFAsoABQALKAUAFAAsoAsoAsoAsoAsoABQAUAHyYFlAFlAFlAAKACgWUAAoAFlAKACgAWUAWUAWUAAWUWUAAoAKABZQBZQBZQCgAWUAAoFlAAKACgAoAFlAFlAKABZQACgWUAAoAFlAKACgAWUAWUAWUAWUAWUAAoAKAD5MCygCygCygAFABQLKAAUACygFABQALKALKALKAALKLKAAUAFAAsoAsoAsoBQALKAAUCygAFABQAUACygCygFAAsoABQLKAAUACygFABQALKALKALKALKALKAAUAFAB8mBZQBZQBZQACgAoFlAAKABZQCgAoAFlAFlAFlAAFlFlAAKACgAWUAWUAWUAoAFlAAKBZQACgAoAKABZQBZQCgAWUAAoFlAAKABZQCgAoAFlAFlAFlAFlAFlAAKACgA+TAsoAsoAsoABQAUCygAFAAsoBQAUACygCygCygACyiWfN5HkTO2Pc6fn/AKDr4aOjkcm/57l7fZeLu5+r6EaOQstALKALKAUACygAFAsoABQAUAFAAsoAsoBQALKAAUCygAFAAsoBQAUACygCygCygCygCygAFABQAfJgWUAWUAWUAAoAKBZQACgAWUAoAKABYKBZQBZQABZQDx+P6Hx83Y5uzjc/V6+PlPXx3aV8eierr9XszqO/MWUAWUAWUAoAFlAAKBZQACgAoAKABZQBZQCgAWUAAoFlAAKABZQCgAoAFlAFlAFlAFlAFlAAKACgA+TAsoAsoAsoABQAUCygAFAAsoaJ5+vS5t1+cx9/FANUu1zvj06Wnd9eazQvQ5nz99N5odTmHS5qdFYffnm5nx6dTTu+vjRp7Xz6effQfP1x9Oeq/O28qupy7b87an151yz49eu8g63JkdN07fr5o+vigAWYy5uLR5+3qPJy+fr1XB1/flssvp5gAUA1/N2vP0+ft6zyNq+m5uj08aS/NvDfj07XDV7bwU7nCO9yYWdzhS914B3uCnc4R3uAd95r9fHQ8+/P13tO/wC/gLAFnL83reffn79B5/ZZsH38UACygCygCygCygCygAFABQAfJgWUAWUAWUAAoAKBZQACgAWWXxMM8Mb9E9Ty/U9ubrGpi0Dy/U8zm6+IZe52er5Xq6mI8H3vB8/XAZ+qCgNmvZ9ef0HJ18mrh+MMjf7vX8j19TFDp46CeB3eXna4ceg9XyvV6OT0scsdPG+aGL+iCfQDbqfXx7HpfK+p253rjuzEeD4+/T5mLN2g8vUBYr0fZ+V39XD9O17NHICy6587z9XV50Z2wHn6ArfofXx9F06N+pifKDK3AlAA7ePr5PXwg8vcFAABPZsvdmeLK4dP6D1/I9fXwaPbnA0fId/nZe0HN2Pqvlfquvh9AaWPQALKALKALKALKALKAAUAFAB8mBZQBZQBZQACgAoFlAAKABZZfEwzwxf0T1PL9T35usamLQPM9PzObs4hl7fZ6vlerqYjwfe8Hz9cBn63duz7NPF4He+/LhvasvJ18lnjDH/Qd3r+R6+nih1cd1bfF8Ojkhlbxt1I9XyvV9+b08M8NPG+aGL+iep5f0fRycmv1XbnfN6vpfm+HTljw6vpd3nd2vgeZ5WWOXtDs+fvH0u+6WNy4dr18fC4PrfG49DyxxaXd7/yX0vfldJx9fB5XEY/6Ae19fPN6He0sfh5/WX5+Zw+p1+PTt07tPTx/KDG/RPZ8b6zp4uB6rtzvKesPP0ewfPjvYT78fx/sPkubs0Di0vR69nq6WN472Xp5cXB7nh/P34pMvb+h9fyPX18Cj253nd/yPN184zNs36Hy+q+V+q6uP0BpY9AAsoAsoAsoAsoAsoABQAUAHyYFlAFlAFlAAKACgWUAAoAFll8TDPDF/RPU8v0Pbw72ho5HQ0Df5nZweHVyjN2Oz1fK9XUxHg+94Pn7YDP1PX7PO6tXD3tD08d7TnZny9fJ8/fjDH/AEHd6/kevqYonRyc3ibdWVus8PXleR7Hj/Xm9XyvVfXp4Z4aWL80Mb9E+j+c+j6+DcNHJfO/Q/NcWjgM/W9fbjp0Mnyxn6z6Pwfpu7Mo78sC4ZpflMezjxv0T1vJ7fvz+h8L3fl+zO0jN2ej6fxvZ08Wjq4QWgad2n4+/lBjfo31nyf0fVwd95XfmdTlR1sM/vzCnyX1vyXH36BnbH0Hq+V6uv8An6PbweH7nh8/T4ssyt36H1/I9fXwac/p4eX4eWOTvuzk+r+/LzPG9fyPn7fVfK/Vevj6A0segAWUAWUAWUAWUAWUAAoAKAD5MCygCygCygAFABQLKAAUACyy+Jhnhi/og+fQEAABez1fK9XUxHg+94Pn7YDP1QsCHo+d6XvzelydfJo5HjDH/Q93r+R6+piPN7fA+PuDO1+j3ufo1cPg8j1vJ4tF6vleqvp4Z4aWN80Mb9E+h+evr4/Tavnp78vdwnL3DuPW8n3fB78viGbsdX0Pge/pY1HXwgUHieb6nl5G86Ofd8ev0/yn1XynXwQcOn73o8Hfr/nqPbxAoGndp+fv5QYv6IJ9BYCfSeh5/oa+AHr4vkvrfkuPv0DO2PoPV8r1df8AP0e3g8P3PD5+nxZWVvfQev5Hr6+A+Y9b5nn6ht4dP0fo9W3XwfnPJ9XyszYfVfK/Ve3h6A0segAWUAWUAWUAWUAWUAAoAKAD5MCygCygCygAFABQLKAAUACyy+Jhnhi/onVy+p6+Op6DuzPPeiPO5va8vx6eMcGp2er5Xq6mI8H3vB8/bAZ+r2btvZpY3nPRenl53R0r83k6+Szxhj/oe/1vK6tLH4OQ4NR38f0Hvy5jTxeDyPX8jK3Xq+V6p6eGeGljfNDG/RDqs5Xbfvz4Xq9np4+X7eTuzL4fueT8+nlDK3Or6L5f6fQyaO3OAojxPN6+TI/QOjn7pff+U+s+X6+DSODV970fH9jWwKPfnAoGndp+fv5QYv6N63k/WdPH5j2XZneM9oaOg9ucLHyX1vyXH36BnbH0Hq+V6uv+fo9vB4fueHz9PijK3fofU83n08Xy9Bm7L6Lyfq+3OyS9+X835XqeXj776r5X6r28PQGlj0ACygCygCygCygCygAFABQAfJgWUAWUAWUAAoAKBZQACgAWWXxMM8MX9E9Ty/U9+brGpi0DzPT8zm7OIZe32er5Xq6mI8H3vB8/bAZ+p6/Zx9mxgB6+ADl6uXy9vGGP+h9Dkxw9fAdHx6d3oS6/58PTz4PI9fyMrcer5Xqnp4Z4aWN80Mb9G+i+d+j68/cNHJWUAvF24/Hp8s2a8b9C+g+f6fbn+jYZ6uGFl1bPD8Ojghk7z2PI+m6uLf4Hv+f18HgjK3en6b5D3O3O9QaGSBTGXLTt1fP18oMb9G+s+T+s7M/dZdDJAoAHyX1vyXH36BnbH0Hq+V6uv+fo9vB4fueHz9PijK3vc8W4evOs9affrdhr/n1l+vn5ry/U8vH331Xyv1Xt4egNLHoAFlAFlAFlAFlAFlAAKACgA+TAsoAsoAsoABQAUCygAFAAssviYZ4Y36N6nl+p7cvWNTFoHmen5nN2cQy9vs9XyvV1MR4PveD5+uAz9bq3ee9uf0Hnr8+hl5uy/P0HJ18nfl+MMjfBXu8PraGVR25oHB5Hr+Rlbj1fK9U9PDPDTxvmhi/on0fzn0fXwbho5KygFB5vjfVeNwafnDh093oeS9fH28PHffn08x49A67N/uY5auGlenh8xo+m+dy9zWOfq9Dt8J78/va/FX47+TXfj1+twzw08X5QZH6B6nlvr49d5D08fXeQPoPU+a+l7swOjlfJfW/JcehoGdr/AEHq+V6uv+fo9vB4fueHz9PijK3gNn1/m+vp4odXEsp815fqeXj776r5X6r28PQGlj0ACygCygCygCygCygAFABQAfJgWUAWUAWUAAoAKBZQACgAWWPEw9qcGr43qbs/XxyHXwUDzPTw8vfwntuPv4PVwz7OB4Pvavj78N7jm7fDe6Twnul8LZ7S/O7k68e3O+de9eHS8DP3MrLmd+XRYBweR9Jhx6Hz3q9eyXZhnOvP+YfRODU+d+ibvfno6uJZQCgA8/yvpXN2fKPpNPL2eC9yz68LZ9B0enl5Xq29meHp5AXRvfP189w/X6+Tu+UfRa/Hp8F720+c6/odvtz46906uH499S4dL5Z9SX5Z9UPlX1Q8T6XRv6+APbwfJfW6PDp+SfV3l7eT1MM+7No+/N4fua/P1+NfWXi0fkuv6Ld9+eynbmhSynzflfZ6+HR+Q+q29H355jr4qABZQBZQBZQBZQBZQACgAoAPkwLKALKDEyuAzYUyBQAUCygAFAAsoR83JFUWUASkstS35WWgFxnz9ZsC5pb8rLYBUfP1UtlFgFRLUS2y/XyAsoYPn6zusbEt+aKAWUIlqJcmKsrijJiMh9fNABU1fP1ucs+fvsc2+/OQ+vhZaCFlAKLAWpQACgWUAAoAFlAKACgAWUAWUAWUAWUAWUAAoAKAD5MCygCyj4T7v