S-образные функции описывают множество естественных процессов роста, а также внедрение и распространение инноваций, будь то новые промышленные методы или потребительские товары. Изначально медленный рост ускоряется в точке нижнего изгиба, за которым следует быстрый подъем, темп которого в конце концов замедляется, формируя второй изгиб, за которым следует замедленный подъем, так как рост становится минимальным и значения приближаются к максимальной границе конкретного параметра или к полному насыщению рынка. Наиболее известная и распространенная функция с S-образной траекторией описывает логистический рост.
В отличие от экспоненциального (неограниченного) роста, увеличение темпа которого пропорционально текущему значению, относительное приращение логистического (ограниченного) роста уменьшается по мере приближения растущего значения к максимально возможному уровню, который в экологических исследованиях обычно называют предельной нагрузкой. Подобный рост интуитивно кажется нормальным:
Обычно население медленно растет с асимптотического минимума, затем быстро множится и медленно движется к нечетко определенному асимптотическому максимуму. Два конца кривой роста населения в целом определяют всю кривую между ними: чтобы так начаться и так закончиться, кривая должна пройти через точку перегиба, это должна быть S-образная кривая (Thompson, 1942, 145).
Формальное определение логистической функции восходит к 1835 году, когда Адольф Кетле (1796–1874; рис. 1.9), бельгийский астроном и в то время ведущий статистик Европы, опубликовал революционную работу под названием Sur l’homme et le développement de ses facultés, ou Essai de physique sociale («О человеке и развитии его способностей, или Эссе по социальной физике»), где отметил невозможность продолжительного экспоненциального роста любого населения (Quetelet, 1835).
Кетле предположил, что силы, противоположные неограниченному развитию и росту населения, возрастают пропорционально квадрату скорости, с которой оно возрастает, и попросил своего ученика, математика Пьера Франсуа Ферхюльста (1804–1849; рис. 1.9), дать формальное решение и затем применить его к лучшим доступным статистическим данным. Ферхюльст согласился и сформулировал первое уравнение, выражающее ограниченный рост населения в короткой публикации в альманахе Correspondance Mathématique et Physique («Работы по математике и физике») (Verhulst, 1838; перевод на английский язык опубликован Vogels et al., 1975). Логистическая модель описана с помощью дифференциального уравнения
где r – скорость максимального роста,