Сюда входит моделирование сетей для дальнейшего исследования и использования алгоритмов сетей в вычислительной технике. Например, многие экспертные системы и системы анализа изображений в качестве основы работы берут именно нейросети живых организмов.
Нейронная сеть в биологии – это множество нейронов, объединенных многочисленными связями друг с другом в нервной системе для выполнения определенных физиологических функций. Головной мозг человека – одна большая и сложная нейронная сеть. Благодаря этим сетям появились искусственные нейронные сети.
Искусственная нейронная сеть – это математическая модель, которая может быть воплощена на программном или аппаратном уровне по принципу биологической нервной системы.
Основной принцип построения сети – совокупность объединенных нейронов – остался неизменным. Но между биологической и искусственной сетями есть и различия, обусловленные их природой.
Во-первых, в искусственных сетях используют искусственные нейроны, которые являются компьютерными процессорами. То есть, искусственная нейросеть – это множество связанных между собой процессоров.
Во-вторых, биологическая сеть является трехмерной, и нейроны в ней связаны очень хаотично и непоследовательно. В подавляющем большинстве искусственные нейросети являются плоскими, так как их проще реализовать.
Принцип работы нейросети заключается в прохождении определенной информации через три слоя нейронов: входного, скрытого и выходного.
Нейроны входного слоя принимают сигналы и передают эти сигналы без обработки нейронам скрытого слоя. Притом при передаче сигнала, он еще и распределяется между другими нейронами неизвестным способом, так как каждый нейрон одного слоя связан с каждым нейроном следующего слоя.
В скрытом слое происходит обработка сигналов и последующая его передача в выходной слой. Именно в скрытом слое и происходит решение задачи. Стоит отметить, что скрытым этот слой назвали по той причине, что мы не можем отследить поведение сети в этом слое: куда передается сигнал, как он распределяется и прочее.
В последнем, выходном, слое происходит последний этап обработки и, если это можно так назвать, конвертирование результата в понятный нам тип информации.
Искусственные сети можно по-разному разделять на типы и классы, однако существует две основные классификации: по наличию обратной связи и по методу «обучения».
Возможно, у вас возникает важный вопрос: как применить нейронную сеть к решению конкретной задачи? Нейронные сети применяются при решении таких задач, алгоритм и правила решения которых неизвестны. В этом заключается преимущество сетей перед обычными программами, которые требуют известный алгоритм или правила решения проблемы.
Наиболее широко нейросети используются при прогнозировании разных процессов (чаще всего экономических), управления разными программными или роботизированными