Но как тогда положительно утверждать что-либо о положении астронавта (нас) и чашки? Пусть «неподвижной точки», которую можно взять за ориентир, не существует, но у нас ведь еще есть координатные модели, и мы можем прикладывать их где хотим. Например, если мы нарисуем сетку с центром в нас самих, то сможем сказать, что чашка движется относительно нас. А если поместим в центр координат чашку, получится, что это мы движемся относительно чашки. Но мы не можем утверждать, что одна из моделей правильная или в чем-то лучше другой. Сказать, что чашка проплывает мимо нас, значило бы лишь обнаружить свое врожденное предубеждение к чайным чашкам.
В книге Эйнштейна «Относительность» 1917 года есть хороший пример, поясняющий, почему ни одна система координат не важнее любой другой. В оригинальном немецком издании автор упоминает в качестве точки отсчета берлинскую Потсдамскую площадь. В английском переводе ее заменили на Трафальгарскую. К тому моменту, когда книга превратилась в общественное достояние и в интернете появилась ее цифровая копия, площадь превратилась в нью-йоркскую Таймс-сквер, потому что редактор именно ее считал «самым известным и узнаваемым местом для англоязычного читателя наших дней». Иначе говоря, о точке отчета важно знать то, что она устанавливается произвольно. В общем-то, она может быть где угодно.
Посему первый шаг к пониманию относительности таков: нужно принять, что любые утверждения о расположении объекта имеют смысл лишь тогда, когда оно определяется вместе с системой координат. Систему мы можем выбрать любую, но не можем говорить, что она правильнее остальных.
С этим пониманием мы вернемся в Цюрих 1914 года.
Эйнштейн садится в поезд в Цюрихе и отправляется в Берлин. Он покидает жену Милеву и двух детей, уезжая в новую жизнь, к собственной кузине, с которой позже сочетается браком. Представим себе, что поезд движется по прямой с постоянной скоростью 100 км/ч и что в какой-то момент этой поездки Эйнштейн поднимается на ноги, вытягивает вперед руку и бросает на пол сосиску.
Отсюда возникает два вопроса: как далеко упадет сосиска и почему он бросил свою жену? Сам Эйнштейн счел бы более увлекательным первый вопрос, так что на нем мы и остановимся.
Предположим, он поднял сосиску на высоту 1,5 метра над полом вагона. Она падает, как можно ожидать, к его обшарпанным ботинкам, строго под вытянутой рукой. Можно заключить, что сосиска пролетела точно полтора метра. Как мы только что видели, подобные утверждения имеют смысл, только когда мы договорились о системе координат. Здесь мы выберем систему координат Эйнштейна – интерьер вагона, и относительно нее сосиска пролетает полтора метра.
Можем ли мы избрать другую систему координат? Представим, что между рельсов сидит мышь и поезд как раз проносится над ее головой, когда Эйнштейн роняет свою сосиску. Какое расстояние пролетит сосиска, если мы примем за точку отсчета эту мышь?
Сосиска