Ансель Адамс. Камера. Негатив. Отпечаток. Ансель Адамс. Читать онлайн. Newlib. NEWLIB.NET

Автор: Ансель Адамс
Издательство: Манн, Иванов и Фербер
Серия: Фотомастерская (МИФ)
Жанр произведения:
Год издания: 2003
isbn: 9785001699750
Скачать книгу
f/4.5, f/6.3, f/9, f/12.7, f/18, f/25 и так далее. Разные числа, но соотношение то же.

      5

      Даже с лучшей оптикой невозможно получить изображение, состоящее из одних точек. Из-за неизбежной дифракции линз точка – это всегда крошечный кружок. Линзы с хорошим разрешением дают микроскопические кружки или диски, которые мы считаем точками.

/9j/4AAQSkZJRgABAQEAAAAAAAD/2wBDAAcFBQYFBAcGBQYIBwcIChELCgkJChUPEAwRGBUaGRgVGBcbHichGx0lHRcYIi4iJSgpKywrGiAvMy8qMicqKyr/2wBDAQcICAoJChQLCxQqHBgcKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKir/wAARCAJbAzkDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD6M70lO7mjFADaKU0lABRRRQAUUUUAJSUtFADcUDNKSKaWFADqXFNDCnA0AFGKTPvQDQAuKKWigBppDmnU00AIRRilpRQAmDSYp2KXFACc0lOxRigBKSnYpMUAJSYOadRj3oAbik5p+KMUAJQKXFLigBtLilxS4oAbRS4pcUARkZpGT1qQ0mKAItpo2GpCBS4oAYF5pQKfSYoATFLS4paAG0uKUCjFADcUtLijFADaOadikxQAgopcUYoAKKKWgAFFFFABRS4oxQAlFFFABRRRQAUUUUAFJS0YoASloIoxQAlHalxRigBKSlIpMjNABS4pMil4oAKKKXFACUtJS0AJSU7FJigBKKMe1GKACijFLigBBS5oxRigBaM0UYoASkp2KQigBOaSlxRigBKQ5p2KTFAC80UYoxQAUUuKTFABRS0mKACnYptOoAdilpaTFACUUuKCKAEooxS0AMpSKdSYoAZg0h46VJimsD2oAjOe1NIbPB+oqRs+lNKkn0FADRmnDPpShMUbecYoAQHnHfvSg8+1PA4pdtACClwaUCjFADc+1IfpT8UbaAGY9qUL7U7FGKAExRt9qdijFADcUuKdSYoATFJin0mKAG4FG2lxRigBMUbafSYoAbijFOxRigBuKXFLijFACYoxS4oxQA3FJin4oxQAzbS7TTsUYoAbto207FGKAG7aXFLijFACYoxS4oxQAmKMUuKMUAJijFLijFADcUYp1JigBMUYpcUtADcUtGKMUAGKMUuKMUAJigClxRigBMCilxRigBMUY9qXFGKAExRS4oxQAmKMUuKMUAJik207FJigBCKYVqTFBX0oAjxRipMUYoAYPxpStOxRigBuPelxS4oxQAmKMUuKMUANxS4pcUYoATFGKXFGKAExS4oxS4oATFGKXFGKAEwKQinYpCKAG4oxTsUYoAbijFOxRigBuKXFLijFACYpMU7FGKAExSYp2KMUANxTsUYp2KACiiigAooooAKKKMUAFFGKKAExSFQadgUYoAbijb+dOooAjOfSlAOOadijFACBaNtOooAQCloooAKKKKACiiigAooooAKKKKACiiigAxRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRS0UAJRRRQAUUtFACUUUUAFFLRQAmKKWigBKKWkoAKKKKACiiigAoopRQAlFLSUAFFBooAKKKKACiiigAooooAKKKKACkpaTFAC0UUUAFJilooATFLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAmKMUtFABRRRQAUUUUAFFFFABTcU6igBKXFFLQAmKWiigAxRRRQAUlLSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFLRQAlLRRQAUUuKMUAJRRRQAlFFFABRRRQAUUUtACUtGKXFACUYpaqahqdlpNr9o1G5jtoc43yHAz/AJFAFoio5Zo4InlmdUjQEszHAA9a8m8ZfGq0gs5rXwwJJZ8Y+1MAFT1wD1+vavItd8X634ouFbU7maU+WI2CcDGemAMY5zz3oA+mYfHfhi41BrGLWrUzrncC2FGP9o8frW5b3EN0he2lSVVYqTGwIBHUcV8VzQFmXau+QHlEGSpB6/pWzpusazoELRWOtz2AcjzEgkYjdk45DdRyaAPsHFJXyzB8UfElpCLf/hIL25CnG5gpI6fxck1t6F8dNW0u/jXWZG1K0IAdSiq6cjLbgBk47UAfRdFcH4e+MXhHxDcfZ1vTYTHhUvAEDfRskfrXV2/iHRruLzbbVLORM7crOuM+nWgDSpKhF3bsyBbiImTlAHGX+nrUiyRuxCOrMvUA5xQA6ikJCgknAHJJ7VGlxDIpMcqMFbaSrA4Pp9eRQBLikoVldQyMCD0IOc0tACUUtGKACilFFACUUtJQAYpKWigBKKKKAFpKKKACiiigAooooAKKKKACijIpNwoAWijPvRQAUUUUAFFFGaACjNFFABmjNFFABmiiigAooooAKKKKACiiigAooooAKKKKACimtIqdTk+gqpLNK/C/IPbr+dAFppo4zh5FUnoCQDVd9St0fblmx1ZVyKrfZwSc8k0G3xQBN/atrx8z/wDfBqX+0bX/AJ6H/vk/4VRNsD25pPsa+goA2aKWigBKKKKACkpaKAEopaMUAJRS0UAJRRRQAUUtJQAUUZooAKKKDQAUUmR6ijI9RQAtFJkeopkk8UQzJIq/U80ASUVSk1WBB8gZz6YxTRqyEZETZ7AkUAaFLise71oQW0k52wwxIXkkfkIAOTXKX/xC0G3jaSTXROccR25LEnnjgYoA9AeWOP8A1jqmf7xxWRf+LND0x41vdRhjMhwp3ZGMHk+3GPrxXz3rPi7UfEE4a7mKQo2VgjYoqj1z1J5xk1kTXDOwYtvYZyXJJ+vWgD3DxJ8W9HsLV00hmvZyCA65VFP1I5H07V51rPxZ8TahKJIZ1sY1HEcAGM5HOSCT0rjZpTuyOSwxnGP8ioPdsnA5780AdLYfFHxZpcLqt95wklMhMoLkkkZ59OMY7Zq1H8afFMc+8GBx2Rw2M59M8/SuKYgn5jyOMUzaGI2ryOcg9vWgD2DSPj5O7bdZ0NccZe1kPA9SpH9a7rSPH9lrtuZ9JMU6A4YbiGT2ZSMj+VfNsUeV29Afwq7Yz3Om3In06eS3mAwXjOMj0x36dDQB9QWuvRTPsnjMJPQ5yPzrVBDAFTkHoRyK+d9F+Iet2EztfCPUImUAJJ8hXBPIKjrzXd6P8VtIW1Z9SSbTmXG4EGRCPUEDr7UAenUhIAJJwBzz2ry7WPjRZx74vDtsb1kXL3NwCkSd8YHJP5V53rHjvX9YjCanrMjQnJMFqBGpHoSByPbmgD3XUPHXh3S5ZEvNSjXymCuyqXUMecZAPP8AKuY174y6TpzqNJj/ALQHR2yybTxj+HnvXg00wc7YwAWOQAME89KLa1luWb5xGqgZd84A9f07UAeqal8cb+QA6XpscSbQrs5Lsrf7I4z9PzrznWdf1DXJZJr26uHy+8kvuVTgDPsfampYgRhoGeR2LCN41OX985GB/P1pJNOeKVd0qoANzI5LBsdzxgn2BP1oAyVjeVZSEkkCggNH3PHPI4/GpmiDRqqnfuHyhScIfYkHJ68jAq4XdJ1+z2bShsEGRAS/HLEnoD+nrVa5muVGyY8Y2bY+mMZxxwB/SgCpNHKDKqFpYkPLgEgNg+3X+VVHtZS43oyE8kYJwM/y5q0wKouCGjdASMk460xJ2hXMQ2kd14A4x19eKAKrQSZKx7mABwQDjGajMQyAD344/pVieaSYgyuWxwBngD6VEeenbpQAiIRg/wB08H0NXGu3MQx88jfKxbJIGPpVZQCT0A7jHBpxGB82Dz0oAs/2neo0Tw3DxyQKNrKxBzjrnt1xgVNB4k1uxuBPa6ncwyqThkYggMckZ71ngjH3c56HJpVXkA8buh9KAN288feJ9Q0/7HeavdyWxBDIznDj0PPI471hrfXybhFdzIGIJ2uVGcjnHY9DTSo3HIxnGDmhVOCMDHXB45x60AX9J8Qa3ochGmavd2iyEeYI5ThgOlemaH8avFFxJbrdWttPBHIfPm2bS64zt64Bx3xXlEKxibMwLL1IU4J/nU73jtaQQRkrHGGBHuxORQB7Rd/H37NJhNJjlRoztInOVf345HsOa4TxR8SvEGv3qPHqPkIhyi26lEUkDhT1/E1xioozg8kcc4FNfPYcHORz+dAGjd+KdduwFn1a5ba7HKvgknqS3VvxzV3Q/iV4s8NwpFYarJJbxsGEE2HTGc4yRkA+xrnmHIOAQBjjgdKQpvHA68j/APVQB9N+APipYeOLx7MwmyvEhV/Jcj52yd+055HQ+uM5r0GvieyurnSr6K9sJXt7iBg8cqEgq3r/APWPBr374Z/FlNaMej+ImMd+EVIZiQRcEDp7OcZx37UAes0VSGp2rHHmFT/tKR/SpBfWzdLhPzxQBZppYDvUXnwn/lsh/wCBCnBkIyHUj1yKAH7h70bhUJuYA+wyrn0zT1ZH+66t9CDQA7eP8il3D/IpMD2qN54o/vOCfQcmgCXcKNwqmb75iBFn6nFIbyQ/dRR+ZoAu5zRx61TS8I/1ijHqtKb4A8Rk/iKALXHrRkVUOooBzG+fbFIupxlsNEyj14NAFzIoyKgW9tnJAlAI6hsipldH+46sPYigBcijIprSRp951X2JphmHVV3D1zQBLmk3e1RCf++mB6g01r63Tq+foCaAJ93tS7z6VTbUoAMqrt9ABUD6s3IjgGexZs/pigDRLv2ApAz47fWshtSu36FU/wB1c1CzTTEmWVnBxxnj8qANeW/ihB3ypn0Xk1D/AGvb4JEjEjsIjms3yV6EdKFhBHP5CgC4+tgZEULuc98D/Gmrrr4y1qQfTeP8Kg8oKM45pjKo46UARy61qXmBoxGo7ptyMfWrlr4hVgFvIGjbuyDI/wDrVVMYJxjn1pjQbj0yTQBvw6haznEUysfTofyqcuPf8q5Uw4wSQfapkubqDiOUgdg3I/KgDo959BR5h7Dmuba+vWYHzyCOwAA/KrVvq0yDF1HvA/iTg/lQBsF39AKQu5GOB7ioIr62kHEoU+j8GrCsjDKspHsQaAI9vrQFFS4oxQBGFHpS7fan4pGdF+8wXHXJoAYU9qXyzTlYMMqQcelSfhQBxk2pXy4/0ybPQ4PP5VVl1TUJItv2qcA9fnIP51pmyz2/Cm/YAOg/SgDItrzUbVswXcyjrgsSPyNWk8QatHNuefeBjKsg2n8qvLpqk8jJHtQdMQ9iR6UAIni+6DqZLOMpgbtrEHPtW5Za7ZXu1Vk8uQ/wPwc/1rDOkjP3aVdJAxlfbmgDq9xpCx9aw7f7VbR7YpTgdAeQPwqR5r1jgzMM8fKAP6UAbBcKPmwPqcUFjjpXNXNrJcENOzOR0LEmiJbm34imkQdgGOPyoA6XefSm7m9qwhd34P8AriT3yAf6VZi1GcJiVFY/3hkZ/CgDV3n2pPMPrWab+T/nnx3+b/61RtdO3PlDP+0xNAGqZGppk/vHH44rLM854CKD68n+tRStO6437M4zsGDQBqvdRoCXfaByS2QB+NQ/2lbZwsiMfZx/jWJNYtMMSMXXn7xJ5qBtJU87c9MHFAHRLfhxmMKfT5xUMmpMDtWME/jisRNKVDuVOOmelWUtpYxtDHA6AnIoAsTX926nDBV9FFVGlmJ5bPrwOf0qYpP2I/IdKcqnjfGCe5HFAFbdKRyx57UqkeYqtIA7AkKzAEj1xmqeu+KtE8P2TzXU6zTqBttInBkfOO3YYOcntXiPiLxPd+I9XkvZlEZI2xpGM+WgzhQe3Xr3JzQB0HxG8UjVdR/syxmLWdoSHMbgrM+fvcdQBgYPfNcYqBsZIA9T1xUS8kFsD0GMU4ZY/KDn8+KAJCu4fJnA688/WmFXYhSOSOTT4X25GNwPQ5xg+tSdWDDIPc9RQBXZCoyScHqR6ZqNl4OBx1yOtXSAeCoAHt1ppi25HU0AZh3dGPB6j1oX5SD1xz359qs3rRWqBpCSW4UKME+/tWNJqEpb92ipycHqaANhOCMrjJ56E/lVuJ0C/vNv1Y4x7e1cvLfXLS5E5UAEHy+BUCK7ggM3OM5Jxj0oA7RtStI0Y+arOpAwDgAnvn057VmTa08rBVCoA3IOCpHrj1rGSJR1yR61N5gj5QBscc9M5oAvtqpSGGHjCgkBlDgHJ5AxhR9KqNdsy5GAcnB5JHpz/hVc5JOfmPr1zRuwcdRQBuWuoWk8CwbDbTyMoaVFL59sZ6HJ4rWU6e0ckcsbTTkbVEmF8sfXIx6+vauMBOfcZ4zV23uIo7d0lySygAqSAoyTjAPzZ9+lAHQy3TeeRC0MEcWVCxkKwC9jz05z71hz30zytukV0IIC8sAB35FMee3lX92rQhSW+QkhTnuCenuDj8qj84ZBBw2AGBIKnrnjH05/nQBGJpSCw2jGBnbyTn6U9pn+YxMQuO5G7kAY6c/SopVG9goKoTghiCQaYOWG7qBxxQA53aRmeRixPqRSDbuDBdo6Ads/Wl24A9ufc0BCe2RQAbQRkggdfxpNuBjHPTA4qRVwckAnPGKcFJIHbHNAEap8vOCT+f50/YcY69hjr+VPVQpODz69s/SndT1yR7ZoAiZAOowcAjI70wj5h0yfTirJQFsZJB6kUgi5B5J+lAEG0D73PY9+aNueAM+v0qfZg+opGUAZY4Hc46UARKAcjkgd6OQDkkevvUjYK8DBHB9PyoWI5569SCM0AGAxARcDqAefwqNkDMMD2/GpzEcYUYP15PHpQsJJ4GOx9MUAQlCCQRwOcc8UFSoAGSDyR71aEPfrjnrikZADjueuaAKirluvPcn/ABpcFHVkbYynOVPQ/WrS25AU8jJI9s/T8alW355Xr1JHFAHtPw58cW3iLT4NJ1CQx6xbxBAJCT9pVR98H+9gcg8967v7OO/8q+XI1ltpkntpDHNGwdHQkMpHfNeo+HPjFOixweJLPzT0NzBgM3uV6fligD1PyB6A0ohA6dOlPsLu21WyS80+dZ4HAKspzj2I7H2NWBFQBWWEHsKcIRnpVoRDjjgU/YMf1oAqrEM+9SKg4B7VN5ftRtI6D8KAItoH17Gk2+p6VLsz9fWlCUARBQKRlA4xU5SmlfxoArMoPbpTdgPOKsFPX8qNvtQBXEQz0yDRsAxgDNWQnTj8KXy6AINpNKFI+7kVYCfnSeWKAK5U+n9aYYsnmrnlCgxUAVPJpPJHp9M1c2VEzRpkM4z0IHJ/KgCEQjk9BThEPx/I0x7r5TsXB9T1FVSmSSRknqfWgCzI0cXDNz6LzVSSd24iymOh9aUjAOOo7U3Azx+NAEamRWyJCSPeo5IywIPJ6VY4BpCSR9KAIUlliGAQQOgbkf8A1qebx8DMan3BNBxnpmmsBxgEn2oAct2BnMeD2Oc1E90+RgBR9MikYDr0NIyjHrg49eKAJku4yP3iFT3xyKmWaBv+WgA6YORVIrSbQDjv/npQBeLwAcyKfbqaEkgcYV1Hs3BqiB6569KAmR/kUAaiB1OYZCP9xv6ZqU3k8I/eT4H+1ishFAOQMEU5gS248kjqck4+tAGst7LKAVmDj2xmkLOOTgDuTxWWFz+HQ96CoJGRyO9AGqsh/gwfoc/1qTzZf85rIChSCox7j0qxlP8AnpN+Q/xoAu+WfX60giP5cVW03X9K1a2hnsrtJFnlMC7Tn94ATtz9BnPftWp5ZIJoAqiM9P0pyx45/SrHl04R5P8AKgCAJxz0o8s1a2Y+vrSbe1AFbaaNpHarGykK8UAV2TNNMfccd+KsbT6U1l5x/k0AQbABRtGcnipCMdaQrz0/HpQAzA9MmlC89KdtPX8aAp/GgBpUD0z+VG0emO/HNPC/5NRXM1tZwma8uIbePpvkYKM+nWgBwUegz60vljng4HXvXFa18RoLcvDotv8AaXDECeXhDx1Azk/pXEal4o13UhKLnUpxFICDBG2xMZ6bR2+tAHp+peLtB0mFHuLxZpHAKwQYdzx0I/h/HFcHqHxW1F7thptrBBCCCqOC8hGOhPTqc8D9K5Bbd5N3GUBySeQevOKY9lI7HCtk9Tzk0Ad6Pi8kas0mlM7mJAqBwFEmTuO7B4+6AOT9K5rXviVr+rRNBAyadA4wUtiQxGT1f73ftisOPTnZ9uN2T2olsJOFUKQOhIA/rQBlSOfM2sSWOc5OST9aZEp5Zhzjjk/nWgNNY/KBxnHTIqZdJbYGHBAB9KAM8RkruJJPAJPSnLHkdASfTjitD7HsUYHTPJ/wpi2uSARjHTPp6UAUjCysMnjjg1KF+U8dSfpV5bXOBjp3qtd3llp8zJOzNKoB8uNf5noKAIgu0Mx4ABJJ9PrWVe6ixYx2pYAcF/8APSlvdVmukwo8mInhU6tz