Isotopic Constraints on Earth System Processes. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения:
Год издания: 0
isbn: 9781119594963
Скачать книгу
and orthopyroxene from mantle peridotites. Earth and Planetary Science Letters, 292, 337–344. https://doi.org/10.1016/j.epsl.2010.01.042

      38 Huang, S., & Frey, F. A. (2005). Recycled oceanic crust in the Hawaiian Plume: evidence from temporal geochemical variations within the Koolau Shield. Contributions to Mineralogy and Petrology, Vol 149, 556–575. https://doi.org/10.1007/s00410‐005‐0664‐9

      39 Ionov, D. A., Yu, ‐. H., Q., Kang, J.‐T., Golovin, A. V., Oleinikov, O. B., Zheng, W., et al. (2019). Calcium isotopic signatures of carbonatite and silicate metasomatism, melt percolation and crustal recycling in the lithospheric mantle. Geochimica et Cosmochimica Acta, 248, 1–13. doi: 10.1016/j.gca.2018.12.023

      40 Jochum, K. P., Stoll, B., Herwig, K., Willbold, M., Hofmann, A. W., Amini, M., et al. (2006). MPI‐DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios. Geochemistry Geophysics Geosystems, 7. doi: org/10.1029/2005GC001060

      41 John, T., Gussone, N., Padladchikov, Y. Y., Bebout, G. E., Dohmne, R., Halama, R., et al. (2012). Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nature GeoScience, 5, 489–492. https://doi.org/10.1038/ngeo1482

      42 Kang, J.‐T., Ionov, D. A., Liu, F., Zhang, C.‐L., Golovin, A. V., Qing, L.‐P., et al. (2017). Calcium isotopic fractionation in mantle pridotites by melting and metasomatism and Ca isotope composition of the Bulk Silicate Earth. Earth and Planetary Science Letters, 474, 128–137. https://doi.org/10.1016/j.epsl.2017.05.035

      43 Kang, J.‐T., Zhu, H. L., Liu, Y. F., Liu, F., Wu, F., Hao, Y. T., et al. (2016) Calcium isotopic composition of mantle xenoliths and minerals from Eastern China. Geochimica et Cosmochimica Acta, 174, 335–344. https://doi.org/10.1016/j.gca.2015.11.039

      44 Kasemann, S. A., Hawkesworth, C. J., Prave, A. R., Fallick, A. E., & Pearson, P. N. (2005). Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: evidence for extreme environmental change. Earth and Planetary Science Letters, 231, 73–86. https://doi.org/10.1016/j.epsl.2004.12.006

      45 Lassiter, J. C., DePaolo, D. J., & Tatsumoto, M. (1996). Isotopic evolution of Mauna Kea volcano: Results from the initial phase of the Hawaii Scientific Drilling Project. Journal of Geophysical Research, 101, 11769–11780.

      46 Leeman, W. P., Carr, M. J., & Morris, J. D. (1994). Boron geochemistry of the Central American Volcanic Arc: Constraints on the genesis of subduction‐related magmas. Geochimica et Cosmochimica Acta, 58, 149–168. https://doi.org/10.1016/0016‐7037(94)90453‐7

      47 Lu, W.‐N., Yongsheng, H. Wang, Y., & Ke, S. (2019). Behavior of calcium isotopes during continental subduction recorded in meta‐basaltic rocks. Geochimica et Cosmochimica Acta, 278, 392–404. https://doi.org/10.1016/j.gca.2019.09.027

      48 Lui, F., Li, X., Wang, G., Liu, Y., Zhu, H., Kang, J., et al. (2017). Marine carbonate component in the mantle beneath the Southeastern Tibetan Plateau: evidence from magnesium and calcium isotopes. Journal of Geophysical Research: Solid Earth, 122, 9729–9744. https://doi.org/10.1002/2017JB014206

      49 Marshall, B. D., & DePaolo, D. J. (1982). Precise age‐determinations and petrogenetic studies using the K‐Ca method. Geochimica et Cosmochimica Acta, 46 (12), 2537–2545. https://doi.org/10.1016/0016‐7037(82)90376‐3

      50 Marshall, B. D., & DePaolo, D. J. (1989). Calcium isotopes in igneous rocks and the origin of granite. Geochimica et Cosmochimica Acta, 53(4), 917–922. https://doi.org/10.1016/0016‐7037(89)90036‐7

      51 Morris, J. D., Leeman, W. P., & Tera, F. (1990). The subducted component of island arc lavas; constraints from Be isotopes and B‐Be systematics. Nature, 344, 31–36. https://doi.org/10.1038/344031a0

      52 Nielsen Lammers, L., Kulasinski, K., Zarzycki, P., DePaolo, D. J. (2020). Molecular simulations of kinetic stable calcium isotope fractionation at the calcite‐aqueous interface. Chemical Geology, 532, 119315. https://doi.org/10.1016/j.chemgeo.2019.119315

      53 Nyström, J. O., Levy, B., Troëng, B., Ehrenborg, J., & Carranza, G. (1988). Geochemistry of volcanic rocks in a traverse through Nicaragua. Revista Geológica de América Central, 8, 77–109. doi: 10.15517/RGAC.V0I08.12950

      54 Patino, L. C., Carr, M. J., & Feigenson, M. D. (1997). Cross‐arc geochemical variations in volcanic fields in Honduras, C.A.: progressive changes in source with distance from the volcanic front. Contributions to Mineralogy and Petrology, 129, 341–351. https://doi.org/10.1007/s004100050341

      55 Patino, L. C., Carr, M. J., & Feigenson, M. D. (2000). Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contributions to Mineralogy and Petrology, 138, 265–283. https://doi.org/10.1007/s004100050562

      56 Putrika, K. D. (2005). Mantle potential temperatures at Hawaii, Iceland, and the mid‐ocean ridge system, as inferred from olivine phenocrysts: evidence for thermally driven mantle plumes. Geochemistry Geophysics Geosystems, 6(Q05L08). doi: 10.1029/2005GC000915

      57 Presnall, D. C., & Hoover, J. D. (1987). High pressure phase equilbrium constraints on the origin of mid‐ocean ridge basalts. In Mysen, B.O. (ed.), Magmatic Processes: Physicochemical Principles, Special Publication‐Geochemical Society, 1, 75–89.

      58 Russell, W. A., Papanastassiou, D. A., & Tombrello, T. A. (1978). Ca isotope fractionation on Earth and other solar‐system materials. Geochimica et Cosmochimica Acta, 42(8), 1075–1090. https://doi.org/10.1016/0016‐7037(78)90105‐9

      59 Sadofsky, S. J., Portnyagin, M., Hoernle, K., & van den Bogaard, P. (2008). Subduction cycling of volatiles and trace elements through the Central American volcanic arc: evidence from melt inclusions. Contributions to Mineralogy and Petrology, 155, 433–456. https://doi.org/10.1007/s00410‐007‐0251‐3

      60 Santos, R. V., & Clayton, R. N. (1995). Variations of oxygen and carbon isotopes in carbonatites: A study of Brazilian alkaline complexes. Geochimica et Cosmochimica Acta, 59, 1339‐1352. https://doi.org/10.1016/0016‐7037(95)00048‐5

      61 Schmitt, A. K., Wetzel, F., Cooper, K. M., Zou, H., & Worner, G. (2010). Magmatic longevity of Laacher See Volcano (Eifel, Germany) indicated by U‐Th dating of intrusive carbonatites. Journal of Petrology, 51(5), 1053–1085. https://doi.org/10.1093/petrology/egq011

      62 Schiller M., Gussone, N., & Wombacher, F. (2016). High temperature geochemistry and cosmochemistry. In: Gussone, N., Schmitt, A.‐D., Heuser, A., Wombacher, F., Dietzel, M., Tipper, E., & Schiller, M. (eds.), Calcium Stable Isotope Geochemistry. Advances in Isotope Geochemistry series. Springer, Berlin, Heidelberg, 223–245.

      63 Simon, J. I., & DePaolo, D. J. (2010). Stable calcium isotopic composition of meteorites and rocky planets. Earth and Planetary Science Letters, 289, 457–466. Скачать книгу