3. Про то, как размеры эллипсов, по которым движутся разные планеты, соотносятся с временем их полного оборота вокруг Солнца. Не только каждая планета сама по себе следует законам, но и каждая пара планет подчиняется строгой и одной для всех математике. «Размером» эллипса в данном случае является его большая полуось – расстояние от центра (а не от Солнца!) до точки наибольшего удаления. Для любой пары планет Кеплер предлагает поделить друг на друга их большие полуоси, а результат возвести в квадрат. В качестве второго действия нужно поделить друг на друга продолжительности года на каждой планете, а результат этого деления возвести в куб. Получится, говорит Кеплер, одно и то же. Чем дальше планета от Солнца, тем больше времени занимает ее полный оборот – не только из-за того, что орбита длиннее, но еще и из-за того, что скорость планеты меньше (в 4 раза дальше – в 8 раз дольше; в 9 раз дальше – в 27 раз дольше).
Кеплер начал с определения формы орбиты Земли, потом это сильно облегчило ему задачу найти форму всех других орбит. Но как же было подступиться к орбите тела, с которого были сделаны все наблюдения? Понадобилось третье, кроме Земли и Солнца, тело, а именно – Марс. Но, поскольку орбита Марса была равным образом неизвестна, Кеплер использовал его как источник некоторого набора отдельных точек («дискретной» информации). Ключ – момент, когда Солнце, Земля и Марс оказались на одной прямой. (Такое положение трех тел случается с неплохой точностью, потому что орбиты Земли и Марса лежат почти в одной плоскости; Земля при этом совершает один оборот вокруг Солнца быстрее, чем Марс.) Направление этой прямой относительно звезд следовало зафиксировать; оно сыграет «опорную»