Симметрия в природе проявляется практически везде – даже если она ничем не примечательна или даже очевидна и банальна. Крылья бабочки – идеальное отражение друг друга. Функции их идентичны, однако я бы очень сильно пожалел бедняжку-бабочку с двумя левыми или двумя правыми крыльями – она бы беспомощно летала по кругу. Симметрия и асимметрия в природе, как правило, вынуждены соревноваться друг с другом. В конечном итоге симметрия – инструмент, при помощи которого мы не просто формулируем законы, но и разбираемся, почему они действуют.
Скажем, пространство и время совсем не так различны, как может показаться. Они словно правое и левое крылья бабочки. Подобие между ними и легло в основу специальной теории относительности – и породило самую знаменитую формулу во всей физике. По всей видимости, законы физики не меняются со временем – эта симметрия позволяет сделать вывод о сохранении энергии. И это тоже хорошо: именно благодаря сохранению энергии наша гигантская батарейка – Солнце – умудряется питать всю жизнь на Земле.
Для многих из нас (ну ладно, для физиков) законы симметрии, обнаруживаемые при изучении физической вселенной, столь же прекрасны, что и симметрия бриллианта, снежинки или идеализированная эстетика совершенно симметричного человеческого лица.
Об этом замечательно пишет математик Маркус дю Сотой:
Лишь самые приспособленные, самые здоровые растения обладают запасом энергии, который позволяет им соблюдать равновесие при создании своей формы. Симметричный цветок превосходит асимметричные, и это отражается в том, что он производит больше нектара и в этом нектаре больше содержание сахара. Симметрия сладка на вкус.
Задачки, которые ставит перед нами симметрия, несказанно радуют наш ум. Американские кроссворды, как правило, представляют собой узор из черных и белых квадратиков, который не меняется, если повернуть всю картинку на пол-оборота или посмотреть на нее в зеркало. На симметрии построены и многие шедевры живописи и архитектуры – пирамиды, Эйфелева башня, Тадж-Махал.
Стоит обыскать задворки сознания – и наверняка вспомнишь пять платоновых тел. Правильных многогранников с одинаковыми гранями всего пять: это тетраэдр (четыре грани), куб (шесть), октаэдр (восемь), додекаэдр (двенадцать) и икосаэдр (двадцать). Какой-нибудь ученый зануда, например, я, с нежностью вспомнит детство и поймет, что именно так выглядели кости в наборе для игры в «Dungeons & Dragons».[2]
Иногда, в повседневном общении, слово «симметрия» относится просто к тому, как предметы «соответствуют» друг другу или «отражают» друг друга, но на самом деле у этого понятия, конечно, есть точное определение. Формулировка, на которую мы будем опираться на страницах этой книги, принадлежит математику Герману Вейлю:
Объект