Изначально, необходимо определить, какое количество энергии затратит протон, приближаясь к ядру алюминия, а именно высоту кулоновского барьера (3), определив радиус ядра алюминия-27 в (2).
Следовательно, нынешняя энергия протона, после затраты на кулоновский барьер, составляет 0,4 эВ. Теперь, необходимо вычислить энергетический выход данной ядерной реакции, с указанными массами в (4).
Поскольку эта реакция экзо-энергетическая, то нет смысла вычислять для неё порог реакции, остаётся лишь записать пару энергетических уравнений (5—6) и затем вычислить энергии, приобретаемые магнием-24 и альфа-частицей.
Из этих энергетических уравнений стало ясно, что кроме выхода реакции, добавляется и оставшаяся кинетическая энергия, благодаря чему общая энергия, распределяемая между частицами, составляет 2,115204957 МэВ из равенства (7). Теперь, для распределения этих энергий достаточно воспользоваться (8) и (9).
И наконец, остаётся определить сечение ядерной реакции и число взаимодействий. Изначально, необходимо вычислить длину волны налетающих протонов, для этого достаточно определить их импульс через (11), перед этим вычислив скорость в (10), а затем уже длину волны в (12).
Переходя уже к исчислению сечений, достаточно воспользоваться (13), но также необходимо использование коэффициента, о котором говорилось ранее, по этой причине применяется и (14), и только после вычисляется истинное сечение (15), для некоторых подсчётов, этот коэффициент становится равным единице, поэтому просто не указывается, но в данном случае, если подсчитать таким же образом.
Теперь, когда сечение известно, для этой реакции, остаётся ввести число взаимодействий (19), перед этим вычислим число атомов на кубометр (16) и указав толщину пластины в 78 мкм, поскольку пробег протона (максимальное расстояние на котором может пройти при определённой энергии) с энергией 3 МэВ составляет это значение.
А также необходимо определить в (18) начальное число бомбардирующих протонов, указав, что их общая сила тока 25 А, а время одного акта, который вытекает уже из параметров циклотрона, описываемый в предыдущих главах составляет 328,13 нс, что гораздо больше времени даже самой долгой реакции, откуда можно вычислить заряд (17), а из него уже и число протонов (18).
Это число всех частиц, прошедших сквозь пластину и не вошедших в реакцию, а для того, чтобы вычислить те, которые вошли в реакцию, достаточно определить разность в (20), а затем