Генезис и структура квалитативизма Аристотеля. В. П. Визгин. Читать онлайн. Newlib. NEWLIB.NET

Автор: В. П. Визгин
Издательство: ЦГИ Принт
Серия: Humanitas
Жанр произведения: Философия
Год издания: 2016
isbn: 978-5-98712-672-1
Скачать книгу
разграничил математические и физические объекты. Математические объекты, по Аристотелю, это – понятия, произведенные абстрагированием (ἐξἀφιρέσεως), т. е. отвлечением (как бы «вычитанием») от физических чувственно данных качеств. Физические объекты, напротив, производятся «сложением» (ἐκ προσθέσεως), они более сложны или «конкретны», чем математические объекты (О небе, III, 1, 299а 16–17). Очевидно, что, так четко отграничив математический объект от физического, Аристотель не мог не подвергнуть критике их смешение у Платона. Нам представляется, что именно в этом обстоятельстве заключается объяснение многих критических замечаний Аристотеля, содержащихся в III книге «О небе», в адрес платоновской теории вещества.

      В ходе своей критики геометрической теории Платона Аристотель развивает свой нематематический, качественный подход. Невозможно, утверждает он, чтобы невесомое, – а математические изначальные объекты, из которых Платон строит физические тела конечно же по Аристотелю, лишены такого физического свойства, как вес, – при сложении с невесомым же дало весомое. Иначе говоря, из математического не вытекает физического: физическое изначальнее математического, обладает бóльшим онтологическим статусом (О небе, III, 1, 299b 15). Это положение запрещает редукцию физического качества к математическому: «Если точка не обладает никаким весом, – говорит Аристотель, – то ясно, что линии не будут им также обладать, тем более поверхности». «Следовательно, никакое тело не имеет веса», – заключает Аристотель (там же, III, 1, 299а 28–30). Следовательно, математический редукционизм Платона несостоятелен: он приводит к суждениям, несовместимым со здравым смыслом и эмпирической достоверностью. Невозможность мыслить такую редукцию физического к математическому Аристотель подчеркивает и в другом месте (О небе, III, 2, 300а 10–13).

      Правда, математический редукционизм Платона, по-видимому, несколько преувеличен Аристотелем. На эту сторону дела обратили внимание уже античные комментаторы, особенно из числа неоплатоников, защищавших Платона и искусно отводивших аргументы Аристотеля. Симпликий замечает, что, в частности, Ямвлих считал, что, говоря о возникновении тел из плоскостей, Платон говорил «символически», а не буквально (De caelo, comm., 564, 10). Эту же точку зрения разделяют и некоторые современные исследователи, например Хит[23]. Клэгхорн отводит значительную часть аргументов Аристотеля, в частности касающихся возникновения качеств из геометрических фигур, считая, что эти аргументы бьют не по Платону, а по тем «кто имеет дело с математикой, исключая другие факторы» [44, с. 48].

      Возможным адресатом этой критики Клэгхорн считает пифагорейцев и атомистов [44, с. 33], тех, «кто принимает во внимание только математические соображения и исключает Receptacle (т. е. платоновскую материю)» [44, c. 32]. Чернисс считает, что Аристотель, по-видимому, имеет в виду учение Спевсиппа, когда критикует образование тел из плоскостей [42, с. 131–132]. Действительно, точный адресат аристотелевской критики


<p>23</p>

«Я не сомневаюсь, – говорит Хит, оценивая замечание Симпликия, – что это – верное объяснение, так как, действительно… три полиэдра таковы, что каждый из них получается из другого перегруппировкой треугольников… при любом другом предположении эта идея была бы слишком фантастической» [67, c. 174–175].