32 32. H. Tsuji, S. H. Hyon, Y. Ikada, Stereocomplex formation between enantiomeric poly(lactic acid)s. 3. Calorimetric studies on blend films cast from dilute solution, Macromolecules 1991, 24, 5651–5656.
33 33. T. Okihara, M. Tsuji, A. Kawaguchi, I. Katayama, H. Tsuji, S. H. Hyon, Y. Ikada, Crystal structure of stereocomplex of poly(l‐lactide) and poly(d‐lactide), J. Macromol. Sci. Part B Phys. 1991, B30, 119–140.
34 34. H. Tsuji, Y. Ikada, Stereocomplex formation between enantiomeric poly(lactid acid)s. 6. Binary blends from copolymers, Macromolecules 1992, 25, 5719–5723.
35 35. H. Fumitaka, Y. Ikada, Stereocomplex formation between enantiomeric poly(lactic acid)s. 7. Phase structure of the stereocomplex crystallized from a dilute acetonitrile solution as studied by high‐resolution solid‐state, Macromolecules 1992, 25, 4114–4118.
36 36. H. Tsuji, S. Hyon, Y. Ikada, Stereocomplex formation between enantiomeric poly(lactic acid)s. 5. Calorimetric and morphological studies on the stereocomplex formed in acetonitrile solution, Macromolecues 1992, 25, 2940–2946.
37 37. H. Tsuji, Y. Ikada, Stereocomplex formation between enantiomeric poly (lactic acids). 9. Stereocomplexation from the melt, Macromolecules 1993, 26, 6918–6926.
38 38. P. Pan, Y. Inoue, Polymorphism and isomorphism in biodegradable polyesters, Prog. Polym. Sci. 2009, 34, 605–640.
39 39. H. Tian, Z. Tang, X. Zhuang, X. Chen, X. Jing, Biodegradable synthetic polymers: preparation, functionalization and biomedical application, Prog. Polym. Sci. 2012, 37, 237–280.
40 40. H. Nakajima, P. Dijkstra, K. Loos, The recent developments in biobased polymers toward general and engineering applications: polymers that are upgraded from biodegradable polymers, analogous to petroleum‐derived polymers, and newly developed, Polymers 2017, 9, 523.
41 41. B. Lotz, Crystal polymorphism and morphology of polylactides, in: M. DiLorenzo and R. Androsch Synthesis, Structure and Properties of Poly(Lactic Acid), Springer, Cham, 2017. https://doi.org/10.1007/12_2016_15.
42 42. D. Sawai, K. Takahashi, T. Imamura, K. Nakamura, T. Kanamoto, S. H. Hyon, Preparation of oriented β‐form poly(l‐lacic acid) by solid state extrusion, J. Polym. Sci. Part B Polym. Phys. 2002, 40, 95–104.
43 43. D. Sawai, K. Takahashi, A. Sasashige, T. Kanamoto, Preparation of oriented β‐form poly(l‐lactic acid) by solid‐state coextrusion: effect of extrusion variables, Macromolecules 2003, 36, 3601–3605.
44 44. D. Sawai, T. Yokoyama, T. Kanamoto, M. Sungil, S. H. Hyon, L. P. Myasnikova, Crystal transformation and development of tensile properties upon drawing of poly(l‐lactic acid) by solid‐state coextrusion: effects of molecular weight, Macromol. Symp. 2006, 242, 93–103.
45 45. J. F. Ru, S. G. Yang, D. Zhou, H. M. Yin, J. Lei, Z. M. Li, Dominant β‐form of poly(l‐lactic acid) obtained directly from melt under shear and pressure fields, Macromolecules 2016, 49, 3826–3837.
46 46. K. Tashiro, N. Kouno, H. Wang, H. Tsuji, Crystal structure of poly(lactic acid) stereocomplex: random packing model of PDLA and PLLA chains as studied by X‐ray diffraction analysis, Macromolecules 2017, 50, 8048–8065.
47 47. K. Tashiro, H. Wang, N. Kouno, J. Koshobu, K. Watanabe, Confirmation of the X‐ray‐analyzed heterogeneous distribution of the PDLA and PLLA chain stems in the crystal lattice of poly(lactic acid) stereocomplex on the basis of the vibrational circular dichroism IR spectral measurement, Macromolecules 2017, 50, 8066–8071.
48 48. K. Aou, S. L. Hsu, Trichroic vibrational analysis on the α‐form of poly (lactic acid) crystals using highly oriented fibers and spherulites, Macromolecules 2006, 39, 3337–3344.
49 49. R. J. Roe, Methods of X‐Ray and Neutron Scattering in Polymer Science, Oxford University Press Inc., New York, 2000.
50 50. M. L. Di Lorenzo, Crystallization behavior of poly(l‐lactic acid), Eur. Polym. J. 2005, 41, 569–575.
51 51. M. Yasuniwa, S. Tsubakihara, Y. Sugimoto, C. Nakafuku, Thermal analysis of the double‐melting behavior of poly(l‐lactic acid), J. Polym. Sci. Part B Polym. Phys. 2004, 42, 25–32.
52 52. A. L. Patterson, The scherrer formula for X‐ray particle size determination, Phys. Rev. 1939, 56, 978–982.
53 53. T. Hahn (Ed.), International Tables for Crystallography‐Vol. A Space Group Symmetry, 5th edition, Springer, Dordrecht, 2005.
54 54. G. Stoclet, R. Seguela, J. M. Lefebvre, S. Elkoun, C. Vanmansart, Strain‐induced molecular ordering in polylactide upon uniaxial stretching, Macromolecules 2010, 43, 1488–1498.
55 55. G. Stoclet, R. Seguela, J. M. Lefebvre, C. Rochas, New insights on the strain‐induced mesophase of poly(d,l‐lactide): in situ WAXS and DSC study of the thermo‐mechanical stability, Macromolecules 2010, 43, 7228–7237.
56 56. K. Tashiro, S. Sasaki, Structural changes in the ordering process of polymers as studied by an organized combination of the various measurement techniques, Prog. Polym. Sci. 2003, 28, 451–519.
57 57. M. L. Di Lorenzo, Determination of spherulite growth rates of poly(l‐lactic acid) using combined isothermal and non‐isothermal procedures, Polymer 2001, 42, 9441–9446.
58 58. H. Tsuji, Y. Ikada, Properties and morphologies of poly(l‐lactide): 1. Annealing condition effects on properties and morphologies of poly(l‐lactide), Polymer 1995, 36, 2709–2716.
59 59. H. Tsuji, Y. Tezuka, S. K. Saha, M. Suzuki, S. Itsuno, Spherulite growth of l‐lactide copolymers: effects of tacticity and comonomers, Polymer 2005, 46, 4917–4927.
60 60. H. M. De Oca, I. M. Ward, Structure and mechanical properties of poly(l‐lactic acid) crystals and fibers, J. Polym. Sci. Part B Polym. Phys., 2007, 45, 892–902.
61 61. L. R. G. Treloar, Calculations of elastic moduli of polymer crystals: 1. Polyethlene and nylon 66, Polymer 1960, 1, 95–103.
62 62. T. Shimanouchi, M. Asahina, S. Enomoto, Elastic moduli of oriented polymers. I. The simple helix, polyethylene, polytetrafluoroethylene, and a general formula, J. Polym. Sci. 1962, 59, 93–100.
63 63. H. Sugeta, T. Miyazawa, A General method for calculating elastic moduli of helical polymer chains in crystals; application to poly(oxymethylene), Polym. J. 1970, 1, 226–231.
64 64. A. Odajima, T. Maeda, Calculation of the elastic constants and the lattice energy of the polyethylene crystal, J. Polym. Sci. Part C Polym. Symp. 2007, 15, 55–74.
65 65. D. N. Theodorou, U. W. Suter, Atomistic modeling of mechanical properties of polymeric glasses, Macromolecules 1986, 19, 139.
66 66. K. Wasanasuk, K. Tashiro, Theoretical and experimental evaluation of crystallite moduli of various crystalline forms of poly(l‐lactic acid), Macromolecules 2012, 45, 7019–7026.
67 67. K. Tashiro, Molecular theory of mechanical properties of crystalline polymers, Prog. Polym. Sci. 1993, 18, 377.
68 68. K. Tashiro, M. Kobayashi, H. Tadokoro, Calculation of three‐dimensional elastic constants of polymer crystals. 1. Method of calculation, Macromolecules 1978, 11, 908–913.
69 69. K. Tashiro, M. Kobayashi, H. Tadokoro, Three‐dimensional elastic constants of polymer crystals. 2. Application to orthorhombic polyethylene and poly(vinyl alcohol), Macromolecules 1978, 914–918.
70 70. K. Tashiro, M. Hanesaka, T. Ohhara, T. Ozeki, T. Kitano, T. Nishu, K. Kurihara, T. Tamada, R. Kuroki, S. Fujiwara, I. Tanaka, N. Niimura, Structural refinement and extraction of hydrogen atomic positions in polyoxymethylene crystal based on the first successful measurements of 2‐dimensional high‐energy synchrotron X‐ray diffraction and wide‐angle neutron diffraction patterns of hydrogenated, Polym. J. 2007, 39, 1253–1273.
71 71. K. Tashiro, M. Kobayashi, H. Tadokoro, Vibrational spectra and theoretical three‐dimensional elastic