84 84. Kim, H.; Gerosa, G.; Aronow, J.; Kasaplar, P.; Ouyang, J.; Lingnau, J. B.; Guerry, P.; Farès, C.; List, B. Nat. Commun. 2019, 10 770.
85 85. Ghosh, S.; Das, S.; De, C. K.; Yepes, D.; Neese, F.; Bistoni, G.; Leutzsch, M.; List, B. Angew. Chem. Int. Ed. 2020, 59, 12347–12351.
86 86. Varlet, T.; Gelis, C.; Retailleau, P.; Bernadat, G.; Neuville, L.; Masson, G. Angew. Chem. Int. Ed. 2020, 59, 8491–8496.
87 87. Hatano, M.; Goto, Y.; Izumiseki, A.; Akakura, M.; Ishihara, K. J. Am. Chem. Soc. 2015, 137, 13472–13475.
88 88. Akiyama, T.; Morita, H.; Fuchibe, K. J. Am Chem. Soc. 2006, 128, 13070–13071.
89 89. (a) Liu, H.; Dagousset, G.; Masson, G.; Retailleau, P.; Zhu, J. J. Am. Chem. Soc. 2009, 131, 4598–4599. (b) Dagousset, G.; Zhu, J.; Masson, G. J. Am. Chem. Soc. 2011, 133, 14804–14813.
90 90. For a review, see: Varleta, T.; Masson, G. Chem. Commun. 2021, 57, 4089–4105.
91 91. Jarrige, L.; Blanchard, F.; Masson, G. Angew. Chem. Int. Ed. 2017, 56, 10573–10576.
92 92. (a) Luo, C.; Huang, Y. J. Am. Chem. Soc. 2013, 135, 8193–8196. (b) See also: Dai, W.; Jiang, X.‐L.; Tao, J.‐Y.; Shi, F. J. Org. Chem. 2016, 81, 185–192.
93 93. Momiyama, N.; Tabuse, H.; Noda, H.; Yamanaka, M.; Fujinami, T.; Yamanishi, K.; Izumiseki, A.; Funayama, K.; Egawa, F.; Okada, S.; Adachi, H.; Terada, M. J. Am. Chem. Soc. 2016, 138, 11353–11359.
94 94. Kretzschmar, M.; Hodík, T.; Schneider, C. Angew. Chem. Int. Ed. 2016, 55, 9788–9792.
95 95. Hatano, M.; Nishikawa, K.; Ishihara, K. J. Am. Chem. Soc. 2017, 139, 8424–8427.
96 96. Nakanishi, T.; Kikuchi, J.; Kaga, A.; Chiba, S.; Terada, M. Chem. Eur. J. 2020, 26, 8230–8234.
97 97. Zhao, J.‐J.; Sun, S.‐B.; He, S.‐H.; Wu, Q.; Shi, F. Angew. Chem. Int. Ed. 2015, 54, 5460–5464.
98 98. El‐Sepelgy, M. S. O.; Haseloff, M. S. S.; Alamsetti, S. K.; Schneider, C. Angew. Chem. Int. Ed. 2014, 53, 7923–7927.
99 99. Alamsetti, S. K.; Spanka, M.; Schneider, C. Angew. Chem. Int. Ed. 2016, 55, 2392–2396.
100 100. Wang, Y.‐M.; Zhang, H.‐H.; Li, C.; Fan, T.; Shi, F. Chem. Commun. 2016, 52, 1804–1807.
101 101. Tan, W.; Li, X.; Gong, Y.‐X.; Ge, M.‐D.; Shi, F. Chem. Commun. 2014, 50, 15901–15904.
102 102. For a review on enantioselective reactions of indolylmethanol catalyzed by chiral phosphoric acid, see: Mei, G.‐J.; Shi, F. J. Org. Chem 2017, 82, 7695–7707.
103 103. For a review on enantioselective reactions of indole‐based chiral heterocycles catalyzed by chiral phosphoric acid, see: Zhang, Y.‐C.; Jiang, F.; Shi, F. Acc. Chem. Res. 2020, 53, 425–446.
104 104. Gelis, C.; Levitr, G.; Merad, J.; Retailleau, P.; Neuville, L.; Masson, G. Angew. Chem. Int. Ed. 2018, 57, 12121–12125.
105 105. Bera, K.; Schneider, C. Chem. Eur. J. 2016, 22, 7074–7078.
106 106. Zhu, Z. Q.; Shen, Y.; Sun, X. X.; Tao, J. Y.; Liu, J. X.; Shi, F. Adv. Synth. Catal. 2016, 358, 3797–3808.
107 107. Sun, X. X.; Zhang, H. H.; Li, G. H.; He, Y. Y.; Shi, F. Chem. Eur. J. 2016, 22, 17526–17532.
108 108. Suneja, A.; Loui, H. J.; Schneider, C. Angew. Chem. Int. Ed. 2020, 59, 5536–5540.
109 109. Villar, L.; Uria, U.; Martínez, J. I.; Prieto, L.; Reyes, E.; Carrillo, L.; Vicario, J. L. Angew. Chem. Int. Ed. 2017, 56, 10535–10538.
110 110. Rueping, M.; Ieawsuwan, W.; Antonchick, A. P.; Nachtsheim, B. J. Angew. Chem. Int. Ed. 2007, 46, 2097–2100.
111 111. Jolit, A.; Walleser, P. M.; Yap, G. P. A.; Tius, M. A. Angew. Chem. Int. Ed. 2014, 53, 6180–6183.
112 112. Ouyang, J.; Kennemur, J. L.; De, C. K.; Farès, C.; List, B. J. Am. Chem. Soc. 2019, 141, 3414–3418.
113 113. Jin, J.; Zhao, Y.; Gouranourimi, A.; Ariafard, A.; Chan, P. W. H. J. Am. Chem. Soc. 2018, 140, 5834–5841.
114 114. Yang, B.‐M.; Cai, P.‐J.; Tu, Y.‐Q.; Yu, Z.‐X.; Chen, Z.‐M.; Wang, S.‐H.; Wang, S.‐H.; Zhang, F.‐M. J. Am. Chem. Soc. 2015, 137, 8344–8347.
115 115. Felker, I.; Pupo, G.; Kraft, P.; List, B. Angew. Chem. Int. Ed. 2015, 54, 1960–1964.
116 116. Wang, Y.‐Y.; Kanomata, K.; Korenaga, T.; Terada, M. Angew. Chem. Int. Ed. 2016, 55, 927–931.
117 117. Uraguchi, D.; Kinoshita, N.; Nakashima, D.; Ooi, T. Chem. Sci. 2012, 3, 3161–3164.
118 118. Itoh, J.; Fuchibe, K.; Akiyama, T. Angew. Chem. Int. Ed. 2008, 47, 4016–4018.
119 119. Mori, K.; Wakazawa, M.; Akiyama, T. Chem. Sci. 2014, 5, 1799–1803.
120 120. Ibáñez, I.; Kaneko, M.; Kamei, Y.; Tsutsumi, R.; Yamanaka, M.; Akiyama, T. ACS Catal. 2019, 9, 6903–6909.
121 121. Sheng, Y.‐F.; Gu, Q.; Zhang, A.‐J.; You, S.‐L. J. Org. Chem 2009, 74, 6899–6901.
122 122. Sheng, Y.‐F.; Li, G.‐Q.; Kang, Q.; Zhang, A.‐J.; You, S.‐L. Chem. Eur. J. 2009, 15, 3351–3354.
123 123. Rueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.; Bolte, M. Org. Lett. 2005, 7, 3781–3783.
124 124. Yang, J. W.; Fonseca, M. T. H.; Vignola, N.; List, B. Angew. Chem. Int. Ed. 2005, 44, 108–110.
125 125. Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 84–86.
126 126. (a) Li, G.; Liang, Y.; Antilla, J. C. J. Am. Chem. Soc. 2007, 129, 5830–5831. (b) Kang, Q.; Zhao, Z.‐A.; You, S.‐L. Adv. Synth. Catal. 2007, 349, 1657–1660. (c) For corrigendum, Kang, Q.; Zhao, Z.‐A.; You, S.‐L. Adv. Synth. Catal. 2007, 349, 2075.
127 127. Rueping, M.; Antonchick, A. P. Angew. Chem. Int. Ed. 2007, 46, 4562–4565.
128 128. (a) Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem. Int. Ed. 2006, 45, 3683–3686. (b) Rueping, M.; Theissmann, T.; Raja, S.; Bats, J. W. Adv. Synth. Catal. 2008, 350, 1001–1006.
129 129. Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem. Int. Ed. 2006, 45, 6751–6755.
130 130. Rueping, M.; Tato, F.; Schoepke, F. R. Chem. Eur. J. 2010, 16, 2688–2691.
131 131. Rueping, M.; Brinkmann, C.; Antonchick, A. P.; Atodiresei, I. Org. Lett. 2010, 12, 4604–4607.
132 132. Han, Z.‐Y.; Xiao, H.; Gong, L.‐Z. Bioorg. Med. Chem. Lett. 2009, 19, 3729–3732.
133 133. (a) For reviews on transefr hydrogenation using CPA and Hantzsch ester, see: Rueping, M.; Sugiono, E.; Schoepke, F. R. Synlett 2010, 852–865. (b) Rueping, M.; Dufour, J.; Schoepke, F. R. Green Chem. 2011, 13, 1084–1105. (c) Zheng, C.; You, S.‐L. Chem. Soc. Rev. 2012, 41, 2498–2518. (d) Phillips, A. M. F.; Pombeiro, A. J. L. Org. Biomol. Chem 2017, 15, 2307–2340.
134 134. Simón, L.; Goodman, J. M. J. Am. Chem. Soc. 2008, 130, 8741–8747.
135 135. Marcelli, T.; Hammar, P.; Himo, F. Adv. Synth. Catal. 2009, 351, 525–529.
136 136. Chen, Q.‐A.; Gao, K.; Duan, Y.; Ye, Z.‐S.; Shi, L.; Yang, Y.; Zhou, Y.‐G. J. Am. Chem. Soc. 2012, 134, 2442–2448.
137 137. (a) Li, C.; Villa‐Marcos, B.; Xiao, J. J. Am. Chem. Soc. 2009, 131, 6967–6969. (b) Tang, W.; Johnston, S.; Iggo, J. A.; Berry, N. G.; Phelan, M.; Lian, L.; Bacsa, J.; Xiao, J. Angew. Chem. Int. Ed. 2013, 52, 1668–1672.
138 138. Wakchaure, V. N.; Kaib, P. S. J.; Leutzsch, M.; Lis, B. Angew. Chem. Int. Ed. 2015, 54, 11852–11856.
139 139. Wakchaure, V. N.; List, B. Angew. Chem. Int. Ed. 2016, 55, 15775–15778.
140 140. Wakchaure, V. N.; Obradors, C.; List, B. Synlett 2020, 31, 1707–1712.
141 141. Zhu, C.; Saito, K.; Yamanaka, M.; Akiyama, T. Acc. Chem. Res. 2015, 48, 388–398.
142 142.