12 Chapter 12Scheme 12.1. Various modes of C(sp3)–H activation.Scheme 12.2. C(sp3)–H bond insertion by metal carbenoids and metal nitrenoid...Scheme 12.3. General catalytic cycle of C(sp3)–H bond insertion by metal car...Figure 12.1. Classification of metal carbenoids.Scheme 12.4. C–H insertion of alkanes with aryldiazoacetates. (a) C–H insert...Scheme 12.5. C–H insertion of alkanes with azavinyl carbenoids.Scheme 12.6. C–H insertion of primary and secondary C–H bonds with Rh porphy...Scheme 12.7. Highly selective C–H insertion of primary C–H bonds.Scheme 12.8. Highly selective carbenoid insertion into secondary C–H bonds....Scheme 12.9. Highly selective carbenoid insertion into tertiary C–H bonds....Figure 12.2. Chiral metal complexes for asymmetric C–H insertion of 1,4‐cycl...Scheme 12.10. C–H insertion of electron‐deficient methyl sites.Scheme 12.11. C–H insertion of allylic and benzylic C–H bonds with triazoles...Scheme 12.12. Synthesis of β‐arylpyrrolidines.Scheme 12.13. Carbenoid insertion into benzylic C–H bonds of substituted eth...Scheme 12.14. Carbenoid insertion into benzylic C–H bonds of benzyl silyl et...Scheme 12.15. Synthesis of 2,3‐dihydrobenzofurans by sequential C–H function...Scheme 12.16. Synthesis of 2,3‐dihydrobenzofurans by sequential C–H function...Figure 12.3. Immobilized Cu(box) complex.Scheme 12.17. C–H insertion of phthalan and dihydrofuran derivatives.Scheme 12.18. C–H insertion of silicon‐substituted alkanes with 1‐sulfonyl‐1...Scheme 12.19. C–H insertion of silicon‐substituted alkanes with aryl diazoac...Scheme 12.20. Application of the combined C–H functionalization/Cope rearran...Scheme 12.21. Intramolecular C–H insertion with α‐diazosulfones. (a) Synthes...Figure 12.4. Chiral metal catalysts used for synthesis of β‐lactones.Scheme 12.22. Intramolecular C–H insertion by non‐diazo approaches. (a) Synt...Scheme 12.23. C–H insertion in carbene/alkyne metathesis (CAM).Scheme 12.24. General catalytic cycle of C(sp3)–H bond insertion of metal ni...Figure 12.5. Chiral metal catalysts used for C–H amination of indane.Scheme 12.25. Diastereoselective C–H amination of indane with chiral sulfoni...Scheme 12.26. Enantioselective intermolecular benzylic C–H amination with su...Scheme 12.27. Enantioselective intermolecular benzylic C–H amination with su...Figure 12.6. Chiral metal catalysts used for the synthesis of cyclic sulfami...Scheme 12.28. Enantioselective intermolecular benzylic C–H amination with su...Figure 12.7. Chiral metal catalysts used for C–H amination with azides.Scheme 12.29. Diastereoselective C–H amination of indane with chiral sulfoni...Figure 12.8. Chiral metal catalysts used for C–H amination with dioxazolones...Scheme 12.30. Asymmetric synthesis of γ‐lactams via C–H amidation enabled by...Scheme 12.31. Asymmetric enzymatic C–H primary amination.Scheme 12.32. Concerted metalation‐deprotonation (CMD).Scheme 12.33. Early discovery of C(sp3)–H activation.Scheme 12.34. Dyker’s synthesis of benzocyclobutane.Scheme 12.35. Pd(0)/PAr3‐catalyzed intramolecular arylation.Scheme 12.36. Pd(0)‐catalyzed enantioselective intramolecular arylation.Scheme 12.37. Baudoin’s asymmetric synthesis of indanes.Scheme 12.38. Pd(0)‐catalyzed arylation of unactivated acylic methylenes.Scheme 12.39. Chiral phosphoric acid catalyst promoted intramolecular arylat...Scheme 12.40. Enantioselective intramolecular arylation of cyclopropanes.Scheme 12.41. Enantioselective trifluoroacetimidoylation of cyclopropane.Scheme 12.42. Pd(0)‐catalyzed directed intermolecular arylation.Scheme 12.43. Cramer’s synthesis of chiral β‐lactams.Scheme 12.44. Cramer’s synthesis of chiral γ‐lactams.Scheme 12.45. Pd(II) catalysis for C(sp3)–H activation.Scheme 12.46. Yu’s preliminary asymmetric C(sp3)–H activation.Scheme 12.47. Oxidative arylation of α‐tertiary amide.Scheme 12.48. Oxidative arylation with aryl boronic acid.Scheme 12.49. Enantioselective desymmetrization of thioamide.Scheme 12.50. Enantioselective desymmetrization of triflamide.Scheme 12.51. Arylation of cyclic α‐tertiary carboxylic acids.Scheme 12.52. Arylation of aliphatic amines. (a) β‐C(sp3)–H amination. (b) β...Scheme 12.53. Redox‐neutral arylation of C(sp3)–H bond in small rings.Scheme 12.54. Directed arylation of benzylic positions.Scheme 12.55. Arylation of aldehyde/ketone via transient directing group str...Scheme 12.56. (Top and bottom) Bidentate‐ligand‐enabled arylation of unactiv...Scheme 12.57. Phosphoric acid enabled arylation of unactivated methylenes.Scheme 12.58. Arylation of cyclopropane‐containing acids/amines.Scheme 12.59. Directed enantioselective borylation of cyclobutane.Scheme 12.60. Enantioselective fluorination of benzylic position.Scheme 12.61. Synthesis of chiral aziridines.Scheme 12.62. Synthesis of chiral β‐lactams.Scheme 12.63. Benzoquinone‐assisted Pd(0)‐catalyzed allylic C(sp3)–H activat...Scheme 12.64. Enantioselective allylic C(sp3)–H alkylation.Scheme 12.65. Enantioselective allylic C(sp3)–H acetoxylation.Scheme 12.66. Asymmetric intramolecular oxidation of allylic C(sp3)–H bond....Scheme 12.67. Chiral‐Ir(III) catalyzed amination of methyl group.Scheme 12.68. Co(III) and Rh(III)‐catalyzed asymmetric amination reactions....Scheme 12.69. Ir(III) and Rh(III)‐catalyzed asymmetric C(sp3)–H activation....Scheme 12.70. General mechanism of C–H activation via oxidative addition.Scheme 12.71. Achiral allylic C–H activation/C–C bond formation by Yu.Scheme 12.72. Asymmetric allylic C–H activation/C–C bond formation by Yu.Scheme 12.73. Enantioselective alkylation of allyl benzene by Mita and Sato....Scheme 12.74. α‐Nitrogen C(sp3)–H alkylation of linear amines by Shibata....Scheme 12.75. α‐Nitrogen C(sp3)–H alkylation of cyclic amines by Shibata.Scheme 12.76. Two‐fold C(sp3)–H alkylation of N‐methyl amines by Nishimura....Scheme 12.77. C(sp3)–H alkylation of methyl amines and ethers by Ohmura and ...Scheme 12.78. Tandem dehydrogenation/C–H alkylation by Suginome.Scheme 12.79. Modification of C(sp3)–H borylation mechanisms based on used l...Scheme 12.80. C(sp3)–H borylation directed by pyridine by Sawamura.Scheme 12.81. Carbonyl directed C(sp3)–H borylation by Sawamura.Scheme 12.82. Carbonyl directed C(sp3)–H γ‐borylation by Sawamura.Scheme 12.83. C(sp3)–H borylation of cyclopropanes by Xu.Scheme 12.84. C(sp3)–H borylation of cyclobutanes by Xu.Scheme 12.85. Pyrazole‐directed C(sp3)–H borylation by Xu.Scheme 12.86. C(sp3)–H borylation of tetrahydroisoquinolines and other azahe...Scheme 12.87. Carbonyl directed C(sp3)–H borylation by Xu.Scheme 12.88. The proposed catalytic cycles for transition metal‐catalyzed C...Scheme 12.89. Achiral C(sp3)–H dehydrogenative silylations.Scheme 12.90. First enantioselective C(sp3)–H dehydrogenative silylations.Scheme 12.91. Enantioselective C(sp3)–H silylation of cyclopropanes by Hartw...Scheme 12.92. The two‐step protocol for C(sp3)–H silylation by Hartwig.Scheme 12.93. Enantioselective C(sp3)–H silylation by He.Scheme 12.94. Ir‐catalyzed C(sp3)–H activation/silylation by Hartwig.Scheme 12.95. Ir‐catalyzed C(sp3)–H activation/silylation of amines by Hartw...
13 Chapter 13Scheme 13.1. Pd‐catalyzed asymmetric synthesis of allylic fluorides.Scheme 13.2. Pd‐catalyzed enantioselective fluorination of acyclic allylic c...Scheme 13.3. Ir‐catalyzed enantioselective fluorination of allylic trichloro...Scheme 13.4. Pd‐catalyzed oxidative 1,2‐fluoroarylation of styrenes.Scheme 13.5. 1,1‐Fluoarylation of allyl amines.Scheme 13.6. Heck arylation‐oxidative fluorination.Scheme 13.7. Catalytic enantioselective fluorination of β‐ and α‐ketoesters....Scheme 13.8. Pd‐catalyzed enantioselective α‐arylation of α‐fluoroketones.Scheme 13.9. SN2 reactivity of the Colby pro‐enolates with MBH carbonates....Scheme 13.10. Mannich reactions of 2‐fluoro‐1,3‐diketones/hydrates and isati...Scheme 13.11. 1,3‐Dipolar cycloaddition of azomethine ylides with β‐fluoroac...Scheme 13.12. SN2 fluorination of alkyl bromides by copper(I) fluoride compl...Scheme 13.13. Enantioselective fluorination of α‐aryl cyclohexanones.Scheme