A Course in Luminescence Measurements and Analyses for Radiation Dosimetry. Stephen W. S. McKeever. Читать онлайн. Newlib. NEWLIB.NET

Автор: Stephen W. S. McKeever
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Физика
Год издания: 0
isbn: 9781119646921
Скачать книгу
QE Assumption3.7 Thermal and Optical Effects3.7.1 Thermal Quenching3.7.1.1 Mott-Seitz Model3.7.1.2 Schön-Klasens Model3.7.1.3 Tests for Thermal Quenching3.7.2 Thermal Effects on OSL3.7.2.1 Effects of Shallow Traps3.7.2.2 Effects of Deep Traps: Thermally Transferred OSL (TT-OSL)3.7.3 More Temperature Effects for TL and OSL3.7.3.1 Phonon-coupling3.7.3.2 Shallow Traps3.7.3.3 Sub-Conduction Band Excitation3.7.3.4 Random Local Potential Fluctuations (RLPF)3.7.4 Optical Effects on TL3.7.4.1 Bleaching3.7.4.2 Phototransferred TL (PTTL)3.8 Tunneling, Localized and Semi-Localized Transitions3.8.1 Tunneling3.8.1.1 General Considerations3.8.1.2 Ground-State Tunneling3.8.1.3 Excited-State Tunneling3.8.1.4 Decay during Irradiation3.8.1.5 Effect of Tunneling on TL and OSL3.8.2 Localized and Semi-localized Transition Models3.8.2.1 Localized Transition Model3.8.2.2 Semi-Localized Transition Model3.8.2.3 Semi-Localized Transitions and the TL Glow Curve3.9 Master Equations4 RPL: Models and Kinetics4.1 Radiophotoluminescence and Its Differences with TL and OSL4.2 Background Considerations4.3 Buildup Kinetics4.3.1 Electronic Processes4.3.2 Ionic Processes4.3.3 More on Buildup Processes4.3.3.1 After Irradiation4.3.3.2 During Irradiation4.3.3.3 Temperature Dependence5 Analysis of TL and OSL Curves5.1 Analysis of TL Glow Curves5.2 Analytical Methods for TL5.2.1 Partial-Peak Methods5.2.1.1 A Single TL Peak with a Discrete Value for Et5.2.1.2 Multiple Overlapping Peaks, and Trap Energy Distributions5.2.2 Whole-Peak Methods5.2.3 Peak-Shape Methods5.2.4 Peak-Position Methods5.2.5 Peak-Fitting Methods5.2.5.1 Principles5.2.5.2 Peak Resolution5.2.5.3 CGCD Using More-Than-One Heating Rate5.2.5.4 Continuous Trap Distributions5.2.6 Calculation of s5.2.7 Potential Distortions to TL Glow Curves5.2.7.1 Thermal Contact5.2.7.2 Thermal Quenching5.2.7.3 Emission Spectra5.2.7.4 Self-Absorption5.2.8 Summary of Steps to Take using TL Curve Fitting5.2.9 Isothermal Analysis5.3 Analytical Methods for OSL5.3.1 Curve-Shape Methods5.3.1.1 CW-OSL5.3.1.2 LM-OSL5.3.2 Variable Stimulation Rate Methods: LM-OSL5.3.3 Curve-Fitting Methods5.3.3.1 The Curve Overlap Problem5.3.3.2 Simultaneous Fitting of LM-OSL Peaks Generated by Varying the Stimulation Rate5.3.4 How Can the Number of Traps Contributing to OSL Be Determined?5.3.4.1 tmax-tstop Analysis5.3.4.2 Comparison with TL5.3.5 Variation with Stimulation Wavelength5.3.6 Trap Distributions5.3.7 Emission Wavelength5.3.8 Summary of Steps to Take using OSL Curve Fitting5.3.9 OSL due to Optically Assisted Tunneling5.3.10 VE-OSL6 Dependence on Dose6.1 TL, OSL, or RPL versus Dose6.2 Dependence on Dose6.2.1 OTOR Model6.2.1.1 Dose-Response Relationships: Linear, Supralinear, Superlinear, and Sublinear6.2.2 Interactive Models: Competition effects6.2.2.1 Competition during Irradiation6.2.2.2 Competition during Trap Emptying6.2.3 Spatial Effects6.2.4 Sensitivity and Sensitization6.2.5 High Dose Effects6.2.5.1 Loss of Sensitivity6.2.5.2 TL and OSL Changes in Shape6.2.6 Charged Particles, Tracks, and Track Interaction6.2.6.1 Dose and Fluence Dependence: Low Fluence6.2.6.2 High Fluence: Track Interaction6.2.7 RPL6.2.7.1 Buildup during Irradiation: A Special Kind of Supralinearity6.2.7.2 Buildup after Irradiation: Linear Response to Dose

      10 Part II Experimental Examples: Luminescence Dosimetry Materials7 Thermoluminescence7.1 Introduction7.2 Lithium Fluoride7.2.1 LiF:Mg,Ti7.2.1.1 Structure and Defects7.2.1.2 TL Glow Curves7.2.1.3 TL Emission Spectra7.2.1.4 TL Glow-Curve Analysis7.2.1.5 Changes to the Glow-Curve Shape with Dose and Ionization Density7.2.1.6 Competition7.2.1.7 Photon Dose-Response Characteristics7.2.1.8 Charged-Particle Dose-Response Characteristics7.2.2 LiF:MCP7.2.2.1 Structure and Defects7.2.2.2 TL Glow Curves7.2.2.3 TL Emission Spectra7.2.2.4 TL Glow-Curve Analysis7.2.2.5 Changes to the Glow-Curve Shape with Dose and Ionization Density7.2.2.6 Photon Dose-Response Characteristics7.2.2.7 Charged-Particle Dose-Response Characteristics7.2.3 Approximately Right; Precisely Wrong8 Optically Stimulated Luminescence8.1 Introduction8.2 Aluminum Oxide8.2.1 Al2O3:C8.2.1.1 Structure and Defects8.2.1.2 OSL Curves8.2.1.3 Emission and Excitation Spectra8.2.1.4 Temperature Dependence8.2.1.5 Photon Dose-Response Characteristics8.2.1.6 Charged-Particle Dose-Response Characteristics8.2.2 A Final Observation9 Radiophotoluminescence9.1 Introduction9.2 Phosphate Glass9.2.1 Ag-doped Phosphate Glass9.2.1.1 Formulation, Growth, and RPL Centers9.2.1.2 Emission and Excitation Spectra: RPL Decay Curves and Signal Measurement9.2.1.3 Buildup Curves: Temperature Dependence; UV Reversal9.2.1.4 Photon Dose-Response Characteristics9.2.1.5 Charged-Particle Dose-Response Characteristics9.2.2 Final Remarks Concerning RPL from Ag-doped Phosphate Glass9.3 Fluorescent Nuclear Track Detectors9.3.1 Al2O3:C,Mg9.3.1.1 Introduction9.3.1.2 RPL in Al2O3:C,Mg9.3.1.3 FNTD Imaging of Charged-Particle Tracks9.3.1.4 FNTD for Neutron Detection9.3.2 LiF9.3.2.1 RPL in LiF9.3.2.2 FNTD9.3.3 Alkali Phosphate Glass9.3.3.1 FNTD10 Some Examples of More Complex TL, OSL, and RPL Phenomena: The Aluminosilicates10.1 Introduction10.2 Feldspar10.2.1 Structure and Defects10.2.2 Energy Levels and Density of States10.2.3 Emission Spectra10.2.4 OSL Phenomena10.2.4.1 Band Diagram10.2.4.2 OSL Excitation Spectra10.2.4.3 OSL Curve Description10.2.5 TL Phenomena10.2.5.1 Glow-Curve Description10.2.5.2 TL Analysis10.2.6 RPL Phenomena10.2.6.1 RPL Emission and Excitation Spectra10.2.6.2 RPL Temperature Dependence10.2.7 What Can Be Concluded?10.3 Aluminosilicate Glass10.3.1 Structure and Composition10.3.2 OSL Phenomena10.3.2.1 OSL Curve Description10.3.2.2 OSL Excitation Spectrum10.3.2.3 OSL Fading10.3.2.4 Potential Uses in Radiation Dosimetry10.3.3 TL Phenomena10.3.3.1 Glow-Curve Description10.3.3.2 TL Emission Spectrum10.3.3.3 TL Analysis10.3.3.4 TL Fading10.3.3.5 Potential Uses in Radiation Dosimetry10.4 Final Remarks11 Concluding Remarks: The Possibilities for Imperfection Engineering11.1 The Importance of Defects11.1.1 The Ideal Luminescence Dosimeter11.1.2 How to Detect Defect Clustering and Tunneling11.1.2.1 Et and s Analysis11.1.2.2 TL and OSL Curve Shapes11.1.2.3 Fading11.1.2.4 Spectral Measurements11.2 The Prospects for “Designer” TLDs, OSLDs, and RPLDs

      11  References

      12  Index

      13  End User License Agreement

      List of Illustrations

      1 Chapter 1Figure 1.1 Conceptual notion of TL and OSL in which...Figure 1.2 (a) Excitation from the equilibrium state...Figure 1.3 (a) Arbitrary distributions of available states...Figure 1.4 Schematic diagram illustrating the differences...Figure 1.5 Examples of personal dosimeters, including...Figure 1.6 (a) NASA’s passive radiation area monitor...Figure 1.7 Potential TL and/or OSL materials for personal...

      2 Chapter 2Figure 2.1 (a) Idealized energy-band diagram for...Figure 2.2 (a) An idealized lattice for an ionic crystal...Figure 2.3 Two views, (a) and (b), of density functional...Figure 2.4 (a) Schematic view of a LiF lattice with...Figure 2.5 Density of states functions Z(E) for (a)...Figure 2.6 Potential ϕ as a function of distance...Figure 2.7 A simple model with one electron trap...Figure 2.8 A configurational coordinate diagram showing...Figure 2.9 (a) Examples of postulated photoionization cross...

      3 Chapter 3Figure 3.1 Exponential decay of luminescence for fixed...Figure 3.2 First-order TL glow curves calculated using...Figure 3.3 First-order TL glow curves: (a) Comparison of the...Figure 3.4 Second-order TL glow curves calculated using...Figure 3.5 Second-order TL glow curves: (a) Comparison...Figure 3.6 Changes in shape of a TL peak from first...Figure 3.7 A model including thermally disconnected traps....Figure 3.8 Schematic representations for the possible OSL...Figure 3.9 (a) Normalized CW-OSL curves of three values...Figure 3.10 Schematic representation of POSL showing...Figure 3.11 (a) A train of stimulation pulses used in a typical...Figure 3.12 Example VE-OSL peak shapes from solutions...Figure 3.13 Normalized CW-OSL curves for different kinetic...Figure 3.14 Generalized phenomenological model for...Figure 3.15 First-order (+) and