Essential Concepts in MRI. Yang Xia. Читать онлайн. Newlib. NEWLIB.NET

Автор: Yang Xia
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Медицина
Год издания: 0
isbn: 9781119798248
Скачать книгу
it can be assumed that the change of the magnetization following excitation is independently caused by external magnetic fields and relaxation processes, the equation of motion of M can be written by combining Eq. (2.14) and Eq. (2.15), in the laboratory frame, as

      StartFraction d upper M Over d t EndFraction equals gamma left-parenthesis upper M times upper B right-parenthesis plus left-parenthesis minus StartFraction upper M Subscript x Baseline i plus upper M Subscript y Baseline j Over upper T 2 EndFraction minus StartFraction left-parenthesis upper M Subscript z Baseline minus upper M 0 right-parenthesis k Over upper T 1 EndFraction right-parenthesis period (2.18)

      Now we are ready to solve the Bloch equation under various conditions. First rewrite the vector equation into the component form, as

      StartFraction d upper M x Over d t EndFraction equals gamma left-parenthesis upper M Subscript y Baseline upper B 0 plus upper M Subscript z Baseline upper B 1 s i n left-parenthesis omega t right-parenthesis right-parenthesis en-dash upper M Subscript x Baseline slash upper T 2 (2.19a)

      StartFraction d upper M x Over d t EndFraction equals gamma left-parenthesis upper M Subscript z Baseline upper B 1 c o s left-parenthesis omega t right-parenthesis minus upper M Subscript x Baseline upper B 0 right-parenthesis en-dash upper M Subscript y Baseline slash upper T 2 (2.19b)

      StartFraction d upper M z Over d t EndFraction equals gamma left-parenthesis en-dash upper M Subscript x Baseline upper B 1 s i n left-parenthesis w t right-parenthesis en-dash upper M Subscript y Baseline upper B 1 c o s left-parenthesis w t right-parenthesis right-parenthesis en-dash left-parenthesis upper M Subscript z Baseline en-dash upper M 0 right-parenthesis slash upper T 1 period (2.19c)

      The above equations have the usual setup for the magnetic fields as

      upper B 0 equals upper B 0 bold k (2.20a)

      upper B 1 left-parenthesis t right-parenthesis equals upper B 1 c o s left-parenthesis omega t right-parenthesis bold i minus upper B 1 s i n left-parenthesis omega t right-parenthesis bold j period (2.20b)

      Thermal equilibrium ensures the initial condition of M in Eq. (2.19) as

      upper M left-parenthesis t equals 0 right-parenthesis equals upper M 0 bold k period (2.21)

      Note that as soon as M is tipped away from its thermal equilibrium state, relaxation processes start. In most analyses, however, we consider only one event at a time – that is, when we use the B1 field to tip the magnetization, we do not consider the relaxation of the magnetization during the tipping process.

      In order to better examine the solution of the Bloch equation (more precisely, to examine the spectral shapes of the waveform solutions), we will describe the magnetization in a rotating frame with an angular velocity ω about the z axis. In this xyz′ frame, we have the component u in the direction of x′ and v in the direction of y′. We can use the common rotation matrix in linear algebra to rewrite the transform matrix as

      v equals minus upper M Subscript x Baseline s i n left-parenthesis omega t right-parenthesis plus upper M y Subscript y Baseline c o s left-parenthesis omega t right-parenthesis period (2.22b)

      Note that Eq. (A1.23) is used in this clockwise rotation, which is consistent with the convention specified in Figure 1.3. (For a counterclockwise rotation, keep both terms of v positive and use a minus sign for the second term of u; see Appendix A1.1).

      By writing the Bloch equation in this rotating frame and by setting the time derivatives in the equation equal to zero, we can solve the Bloch equation in the rotating frame. The solutions are

      u equals upper M 0 StartFraction gamma upper B 1 upper T 2 squared left-parenthesis omega 0 minus omega right-parenthesis Over 1 plus upper T 2 squared left-parenthesis omega 0 minus omega right-parenthesis squared plus upper T 1 upper T 2 gamma squared upper B 1 squared EndFraction (2.23a)

      upper M Subscript z Baseline equals upper M 0 StartFraction 1 plus upper T 2 squared left-parenthesis omega 0 minus omega right-parenthesis squared Over 1 plus upper T 2 squared left-parenthesis omega 0 minus omega right-parenthesis squared plus upper T 1 upper T 2 gamma squared upper B 1 squared EndFraction (2.23c)

      2.8 FOURIER TRANSFORM AND SPECTRAL LINE SHAPES

      Before we proceed to analyze the characteristics of the magnetization motion expressed in Eq. (2.23), let us pause for a moment to briefly mention two concepts that are essential to modern NMR, Fourier transform (FT) and spectral line shapes.

      2.8.1 Fourier Transform