80 80 Bruno, R., Conti, M., and Gregori, E. (2002). Bluetooth: Architecture, protocols and scheduling algorithms. Cluster Comput. 5 (2): 117–131.
81 81 Patti, G., Leonardi, L., and Lo Bello, L. (2016). A Bluetooth Low Energy RealTime Protocol for Industrial Wireless Mesh Networks. In: IECON 2016 – 42nd Annual Conference of the IEEE Industrial Electronics Society, 4627–4632.
82 82 Gomez, C., Oller, J., and Paradells, J. (Aug 2012). Overview and evaluation of Bluetooth low energy: An emerging low-power wireless technology. Sensors 12 (9): 11734–11753.
83 83 Baert, M., Rossey, J., Shahid, A., and Hoebeke, J. (Jul 2018). The Bluetooth mesh standard: An overview and experimental evaluation. Sensors 18 (8): 2409.
84 84 IEEE 802.11 Wireless Local Area Networks. https://www.ieee802.org/11.
85 85 Banos-Gonzalez, V., Afaqui, M., Lopez-Aguilera, E., and Garcia-Villegas, E. (Nov 2016). IEEE 802.11ah: A technology to face the IoT challenge. Sensors 16 (11): 1960.
86 86 Hazmi, A., Rinne, J., and Valkama, M. (2012). Feasibility Study of IEEE 802.11 ah Radio Technology for IoT and M2M Use Cases. In: 2012 IEEE Globecom Workshops, 1687–1692.
87 87 Siemens. (Oct 2020). Boost in Efficiency with WiFi6 – New WLAN Standard Makes It Easier to Handle Large Numbers of Participants. https://press.siemens.com/global/en/news/boost-efficiency-wi-fi-6.
88 88 Cavalcanti, D., Perez-Ramirez, J., Rashid, M.M., Fang, J., Galeev, M., and Stanton, K.B. (2019). Extending accurate time distribution and timeliness capabilities over the air to enable future wireless industrial automation systems. Proc. IEEE 107 (6): 1132–1152.
89 89 Ali, R., Kim, S.W., Kim, B.-S., and Park, Y. (2018). Design of MAC layer resource allocation schemes for IEEE 802.11ax: Future directions. IETE Tech. Rev. 35 (1): 28–52.
90 90 LoRa Alliance@, https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2578.
91 91 3GPP. (Jun 2013). Study on Provision of Low-Cost Machine-Type Communications (MTC) User Equipments (UEs) based on LTE (Release 12). TR 36.888, 3rd Generation Partnership Project (3GPP). https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2578.
92 92 3GPP. (Nov 2015). New WI proposal: NB-IoT (Release 13). RP 151619, 3rd Generation Partnership Project (3GPP). https://portal.3gpp.org/ngppapp/TdocList.aspx?meetingId=31198.
93 93 Mekki, K., Bajic, E., Chaxel, F., and Meyer, F. (2019). A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express 5 (1): 1–7.
94 94 Rebbeck, T., Mackenzie, M., and Afonso, N. (2014). Low-Powered Wireless Solutions Have the Potential to Increase the M2M Market by over 3 Billion Connections. Analysys Mason.
95 95 Huawei. CIoT: Cellular Internet of Things. https://carrier.huawei.com/en/products/wireless-network/lte/c-iot.
96 96 NWAVE. Nwave Smart Parking Company. https://www.nwave.io.
97 97 GSMA. (Dec 2015). GSMA Welcomes Mobile Industry Agreement on Technology Standards for Global Low Power Wide Area Market. https://www.gsma.com/newsroom/press-release/gsma-welcomes-mobile-industry-agreement-on-technology-standards.
98 98 Vangelista, L., Zanella, A., and Zorzi, M. (2015). Long-range IoT technologies: The dawn of LoRa. In: Future Access Enablers for Ubiquitous and Intelligent Infrastructures (ed. V. Atanasovski and A. Leon-Garcia), 51–58. Springer International Publishing.
99 99 Sforza, F. (2013). Communications System. US Patent US8406275B2, application filed 09 March 2010 and granted 26 March.
100 100 Reynders, B., and Pollin, S. (2016). Chirp Spread Spectrum as a Modulation Technique for Long Range Communication. In: 2016 Symposium on Communications and Vehicular Technologies (SCVT), 1–5.
101 101 Reynders, B., Meert, W., and Pollin, S. (2016). Range and Coexistence Analysis of Long Range Unlicensed Communication. In: 2016 23rd International Conference on Telecommunications (ICT), 1–6.
102 102 Petajajarvi, J., Mikhaylov, K., Pettissalo, M., Jan- Hunen, J., and Iinatti, J. (2017). Performance of a low-power wide-area network based on LoRa technology: Doppler robustness, scalability, and coverage. Int. J. Distrib. Sens. Netw. 13 (3).
103 103 Song, Y., Lin, J., Tang, M., and Dong, S. (2017). An Internet of energy things based on wireless LPWAN. Engineering 3 (4): 460–466.
104 104 Mikhaylov, K., Petaejaejaervi, J., and Haenninen, T. (2016). Analysis of Capacity and Scalability of the LoRa Low Power Wide Area Network Technology. In: European Wireless 2016; 22nd European Wireless Conference, 1–6.
105 105 Petric, T., Goessens, M., Nuaymi, L., Toutain, L., and Pelov, A. (2016). Measurements, Performance and Analysis of LoRa FABIAN, a Real-World Implementation of LPWAN. In: 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications