6 Chapter 6Figure 6‐1 Point in‐situ CEM monitor.Figure 6‐2 In‐situ point monitor probe configurations. (a) In‐situ probe opt...Figure 6‐3 Performance check of an in‐situ point monitor using calibration g...Figure 6‐4 Procal UV differential absorption point in‐situ monitor.Figure 6‐5 Sick, Inc. point in‐situ monitor.Figure 6‐6 Procal GFC point in‐situ monitor.Figure 6‐7 Codel single‐pass gas filter correlation monitor.Figure 6‐8 Sick, Inc. GM35 greenhouse gas monitor.Figure 6‐9 Probe configuration of a zirconium oxide in‐situ point monitor fo...Figure 6‐10 Integrated‐path, single‐pass in‐situ CEM system.Figure 6‐11 Integrated‐path, double‐pass in‐situ CEM system.Figure 6‐12 Methods for increasing the measurement path of integrated‐path i...Figure 6‐13 Gas stratification in a duct.Figure 6‐14 Flow‐through gas cell in a single‐pass system.Figure 6‐15 Single‐pass monitor with external analytical unit.Figure 6‐16 A double‐pass system with flow‐through calibration cell.Figure 6‐17 Audit cell for a path monitor.Figure 6‐18 Opsis single‐pass monitor.Figure 6‐19 (a) Modulated laser intensity as a function of time and waveleng...
7 Chapter 7Figure 7‐1 Differential pressure monitoring.Figure 7‐2 Standard and Type‐S pitot tubes.Figure 7‐3 Three‐dimensional pitot tubes: (a) prism probe (b) spherical prob...Figure 7‐4 Method 1 sampling points used to determine an area average.Figure 7‐5 Multipoint averaging techniques using differential pressure sensi...Figure 7‐6 Multiple averaging probes in a rectangular duct.Figure 7‐7 Thermal sensor.Figure 7‐8 Acoustic measurement of flue gas velocity.Figure 7‐9a Ultrasonic flow monitor planar X pattern.Figure 7‐9b Ultrasonic flow monitor – a 90° pattern with crisscrossed X‐patt...Figure 7‐10 Time‐of‐flight optical scintillation method.Figure 7‐11 Time‐of‐flight infrared correlation.Figure 7‐12 A stack venturi for monitoring flow.Figure 7‐13 The orifice meter.
8 Chapter 8Figure 8-1 Single-pass transmissometer.Figure 8-2 Double-pass transmissometer system.Figure 8-3 Spectral response for a green LED.Figure 8-4 (a) Angle of projection. (b) Angle of view.Figure 8-5 Opacity monitor audit jig attached to the transceiver assembly.Figure 8-6 Light Hawk 560 opacity monitor schematic.Figure 8-7 Measurement mode of the Sick double-pass opacity monitor.Figure 8-8 Beam splitter function in the measurement and flood mode of the A...Figure 8-9 The Durag D-R 290 opacity monitor.Figure 8-10 Single-pass laser opacity monitor using fiber-optics for calibra...Figure 8-11 A tapered stack.Figure 8-12 Two ducts entering a common stack.Figure 8-13 Particulate mass–opacity correlation.Figure 8-14 Particle stratification in ducts and stacks.Figure 8-15 Helical flow patterns due to tangential entry.Figure 8-16 Path criteria for a location (a) downstream from a bend and (b) ...Figure 8-17 Optical path requirements for horizontal ducts (a) greater than ...Figure 8-18 Setting up the clear path in the laboratory.Figure 8-19 Adjusting the iris. (a) Stack zero. (b) Transceiver zero.
9 Chapter 9Figure 9‐1 Gravimetric – particulate monitor correlation for a particulate m...Figure 9‐2 Correlation issues.Figure 9‐3 Determining the operating limit.Figure 9‐4 A β ‐gauge paper tape monitor.Figure 9‐5 Design of an inertial microbalance for source testing.Figure 9‐6 Detail of Mie scattering phenomena.Figure 9‐7 Light scattering instrument configurations. (a) Backscattering. (...Figure 9‐8 Teledyne Monitor Labs backscattering particulate monitor.Figure 9‐9 SPTC/ESC P5‐C Backscattering continuous particulate monitor.Figure 9‐10 Durag forward scattering in‐situ particulate monitor.Figure 9‐11 Extractive forward extractive particulate monitoring system.Figure 9‐12 In‐stack imaging particle size monitor.Figure 9‐13 Combination extinction, forward light scattering monitor.Figure 9‐14 The DustTrak ambient air hybrid aerosol analyzer.Figure 9‐15 Thermo Fisher Scientific combination light scattering/inertial m...Figure 9‐16 Extractive system configuration for vaporizing water droplets – ...Figure 9‐17 Extractive system configuration for vaporizing water droplets – ...Figure 9‐18 Passing criteria for the Relative Response Audit (RRA).Figure 9‐19 Passing criteria for the Response Correlation Audit (RCA).
10 Chapter 10Figure 10‐1 CEM systems control and data acquisition and handling: functions...Figure 10‐2 An example CEM system data acquisition and handling system for t...Figure 10‐3a Part 75 missing data routines. Availability ≥95%.Figure 10‐3b Part 75 missing data routines. Availability ≥90% <95%.Figure 10‐3c Part 75 missing data routines. Availability ≥80% <90%.Figure 10‐3d Part 75 missing data routines. Availability < 80%.Figure 10‐4 The CEMS – PEMS combination.Figure 10‐5 Automatic computer drift corrections.Figure 10‐6 A three‐hour rolling average and how it differs from a three‐hou...Figure 10‐7 A 30‐day rolling average.Figure 10‐8 Functions of the DAHS computer.
11 Chapter 11Figure 11-1 Particle stratification in ducts and stacks.Figure 11-2 Monitoring location for integrated path monitor.Figure 11-3 Reference method traverse points on a measurement line (a) <2.4 ...Figure 11-4 Correlation of reference method data and CEM data in response ti...
12 Chapter 12Figure 12‐1 Reduction of ionic mercury to elemental mercury using reducing a...Figure 12‐2 Atomic absorption analyzer for mercury.Figure 12‐3 The use of dual sample cells.Figure 12‐4 Orientations of the p orbitals.Figure 12‐5 Splitting of the p energy levels.Figure 12‐6 198Hg Lamp σ −, π, and σ + emissions and Hg light ...Figure 12‐7 Longitudinal Zeeman effect analyzer configuration.Figure 12‐8 Atomic fluorescence analyzer for mercury.Figure 12‐9 The Tekran continuous mercury sampling system.Figure 12‐10 Gold trap pre concentration technique.Figure 12‐11 The Thermo Fisher continuous mercury monitoring system.Figure 12‐12 Schematic of an elemental mercury (Hg0) calibrator.Figure 12‐13 Evaporative oxidized mercury calibrators.Figure 12‐14 HgCl2 generator using Cl2.Figure 12‐15 HgCl2 generator using HCl.Figure 12‐16 NIST Hg/HgCl2calibrator traceability.Figure 12‐17 Sorbent trap monitoring system (meeting PS‐12 specifications)....Figure 12‐18 Paired carbon traps for mercury sampling for a continuous sorbe...Figure 12‐19 Removing sorbent traps.Figure 12‐20 The Ontario Hydro sampling train.Figure 12‐21 Method 30B sampling train.
13 Chapter 13Figure 13‐1 Example gas chromatograph.Figure 13‐2 A gas chromatogram.Figure 13‐3 Gas chromatograph multiport rotary valve.Figure 13‐4 A flame ionization detector.Figure 13‐5 A flame photometric detector.Figure 13‐6 Operating principle of the thermal conductivity detector.Figure 13‐7 A total ion current chromatogram.Figure 13‐8 A quadrupole mass analyzer.Figure 13‐9 An ion‐mobility spectrometer.Figure 13‐10 X‐ray fluorescence continuous metals emissions monitoring syste...Figure 13‐11 Atomic emission spectroscopic method for monitoring metals – in...Figure 13‐12 A bag leak detector installation.Figure 13‐13 Chemical structures of PCDDs and PCDFs.Figure 13‐14 U.S. EPA Method 23 sampling train for dioxins and furans.Figure 13‐15 Steps in test methods for PCDDs/furans.
14 Chapter 15Figure 15‐1 CEM system quality assurance framework.Figure 15‐2 An example quality control chart for daily calibration drift.Figure 15‐3 Quality control chart examples indicating possible problems.Figure 15‐4 Probe calibration check technique for (a) an external filter usi...Figure 15‐5 Audit method for probes that cannot be flooded. The “external at...Figure 15‐6 In‐situ monitoring system external flow‐through gas cell.Figure 15‐7 The quality assurance cycle.
Guide
3 CONTINUOUS EMISSION MONITORING
5 PREFACE
6 Table